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Abstract: A mathematical foundation and theory for Information Retrieval
(IR) is created (for the first time). A unified definition for the classical (vector,
probabilistic) models is given. Abstract mathematical structures, characteris-
ing retrieval, are revealed based on which mathematical theories are created.
Mathematical definition for relevance effectiveness is given. All particular
mathematical results achieved in IR so far can be integrated into this new
theory. Moreover, it is shown that the classical models of IR are a special
case of Interaction IR (I?R) — beside that of Associative IR (AI%R). Thus,
IR becomes a mathematical discipline (too), formally comparable to other
scientific disciplines, researchable by rigorous mathematical means, methodi-
cally accessible by and teachable to a more diverse scientific audience. Also,

links between IR and modern mathematical disciplines are formally created.

1. Introduction
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Generalizations ([16], [33], [38]) of the probabilistic /R yielded the
idea of creating a unified mathematical foundation and theory of IR,
the importance of which consists in that making full use of rapidly
developing technological advances (Internet, CD-ROM industry) can
only be expected on the basis of a unified and consistent mathemati-
cal theory. Because these generalizations shifted the interpretation of
conditional probabilities (which play a central role in probabilistic IR)
towards logic, logic IR models were elaborated. They constitute a new
model type of IR, and, on the other hand, aimed at containing the clas-
sical models of IR, too, as special cases ([5], [4], [34], [18]) but without
success.

The present paper realizes this idea (for the first time), on a math-
ematical basis. All parts, apart from Part 4, are new and original.

Firstly, the concepts of classical IR models (vector, probabilistic)
are recalled and mathematically defined to fix the ideas (Part 2). Then,
a unified definition is formulated, and it is shown that the two classical
models are two special cases of it (Part 3). Part 4 recalls the concepts
of relevance effectiveness measures which are used later on.

The next part, Part 5, creates the basis for a mathematical theory
of the classical vector model. A naturally arising link to metric spaces
and metric induced topological spaces is revealed, and it is shown that
retrieval means inducing a topology. This is the case in typical vector
models (and thus usual database searching as well). Also, the link to
nonmetric topologies is justified, a point to which recent research links.
In this case, too, retrieval means defining a topology (using open sets).
A concept of optimal relevance effectiveness is defined as finding all
sequences of documents that converge (either in a metric or vicinities-
based sense) to a query (Cauchy-sequences).

Part 6 creates the basis for a mathematical theory of the proba-
bilistic model. It is shown that the main technique used for repeatedly
enhanced retrieval, namely relevance feedback, yields a Diophantine
set (of retrieved documents). Thus, a fixed point exists which yields a
mathematical formulation of optimal relevance effectiveness as a con-
trained nonlinear optimisation problem controlled by a very specific
surface.

Part 7 shows that the unified definition of the classical models is
a special case of a more general (and nonclassical) model of IR: In-
teraction IR (I?R). It is also shown that there exists another special
case of IR as well called Associative IR (AI’R) in which retrieval means



Foundation of information retrieval 139

defining a matroid.

Because IR, due to this new, unified and consistent mathematical
theory, now has its own mathematical individuality, it can be formally
subjected to various mathematical considerations. Examples are shown
in Part 8: comparisons with decision theory and situation theory, and
computational complexity aspects.

Proofs are only given for theorems, lemmas, etc. that are partic-
ularly relevant to this new theory of IR.

2. The classical models of IR

The basic models can be defined as follows (based on [32], [27],
(28], [39], [35]):
2.1. Definition of Vector IR (DVIR). Given a nonempty finite set D,
a threshold value 7 € R and two mappings o : D x D — [0; 1] and R :
: D — p(D) such that: i) 0 < o(a,b) < 1, Va,b € D (normalization); ii)
o(a,b) = o(b,a), Va,b € D (commutativity); iii) a = b = o(a,b) = 1,
Va,b € D (reflexivity); iv) R(q) = {d € D : o(d,q) > 7} (retrieval).
Then the 3-tuple (D, o, R) is called a Vector IR.

o is called a similarity. See [19], [13] fore more on this.
2.2. Definition of Probabilistic IR (DPIR). Given a nonempty finite
set D, a cut-off value o € R, a probability measure P over p(D x
X D). Let Ry € D x D and I, C D x D be two binary relations,
¢ €D, and ® : D — p(D), R(g) = {d € D : P(Ry|{(g,d)}) >
> P(I;1{(g,d)}) A P(Rq|{(g,d)}) > @} a mapping (retrieval). Then
the 3-tuple (D, P,R) is called a Probabilistic IR.

P(R,|{(g,d)}) > P(1;]{(g,d)}) is called Bayes’ Decision Rule.
2.3. Further models are defined using the basic models.

3. Unified definition of the basic models

Let

T = {t1,ta,...,tk...tx} be a set of identifiers, N > 1;

O ={01,02...04,...,0u} a set of objects, U > 1;

(D;j € p(0))jes=11,2,..,m} a family of object clusters, M > 2;

D = {6; : Vj € J} a set of documents, 6; = {(tx, s, (tr)) : tr €
€T, k=1,2,...,N} is a fuzzy set and cluster representative of D;,
ps; : T — 8 C[0;1], V5 € J;
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= {@1,8z...8;...ac} be a set of criteria, C > 1 where a; =
{((q,o]) pa;(g,8;)) 1 6; € D, j = 1,2,..., M}, is a fuzzy relation,
=1,2,...,C, pa, : D x D — [0;1], ¢ € D arbitrary fixed;
o = {6 € D : pslg,6) > s}, i =1,2,...,C, an aj-cut of a;,
0 < a; < +00, ¢ € D arbitrary fixed (a,, is used rather than a4q, to
avoid using too many indices);
R : D — p(D) a mapping called retrieval.
All sets are finite. See also [20] for more on fuzzy techniques used
in IR. All fuzzy sets are normalised.
3.1. A unified definition of the classical models is as follows.
Definition 1. A 2-tuple (D,R) is called a Classical Information Re-
trieval (CIR) if the following properties P1 and P2 hold: P1. ¢=0=
= pa;(q,0) =1,Yq,6 € D,i=1,2,...,C; P2. R(q) = {0 : pa; (¢, 0) =
= maxg=1,..,C Ha,(2,0)} Naq;, arbltrary fixed, k=1,...,C.
3.2. A special case of CIR is as follows.
Definition 2. Similarity Information Retrieval (SIR) is a CIR (D, ®)
if properties S1 and S2 hold: S1. C = 1; S2. pugz,(g,0) = s, (6,q), Vo,
g € D (commutativity).
It is now shown that the classical vector model is a special case of
CIR.
Theorem 1. DVIR and SIR are equivalent.
Proof. “<”. C =1 by S1. Let a; be this criterion and called ‘similar’.
By S2: u(g,8) = u(6,q), V9, ¢ € D. By P1: ¢ = 6= u(g,0) = 1, Vo,
g € D. pis normalized: 0 < pu(g,6) < 1,V6, ¢ € D. Hence p satisfies i)-
iii) of DVIR. P2 becomes: R(g) = {0: u(g,8) > a}. “=" o is a degree
to which b is similar to a, thus o(a, b) is conceived as ua, (a,b) where a;
denotes ‘similar’. This is equivalent to S1. Condition i) is equivalent
to normalization, ii) to S2, whereas iii) to P1. The retrieval condition
becomes: R(qg) = {d € D : o(d,q) > 7} = {d € D : pa(d,q) =
= Imax Uz, (da Q)} Nar. <>
Two special cases of SIR are as follows:
Definition 3. Binary SIR (BSIR) is a SIR with S = {0,1}.
Definition 4. Non-Binary SIR (NBSIR) is a SIR where S = [0; 1].
3.3. Another special case of CIR is as follows:
Definition 5. Probabilistic IR (PIR) is a CIR (D,R) in which the
following property P holds: C = 2.
It is now shown that the classical probabilistic model is a special
case of CIR by showing that it is equivalent to PIR. But the following
lemma is needed first.
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Lemma 1. GivenT, D anda;, i = 1,2. Let P be a probability measure
N

and pfi) = P(Xy = po,(t)), i = 1,2. If §) 1z, (4,67) = 3 log(pl)/
=1

/p(z) ), © = 1,2; ii) identifier occurrences are independent; iii) the two
crzteria are disjoint; then 1) The degree of compatibility of an object with
a criterion 1s directly proportional to the conditional probability of that
criterion given the object, i.e. pa, (q,6;) > pa,(q,0s) < P(a1|o;) >
> P(an[6.), 0nd 2) i, (0.5) > s (3.0) © P(a1 |5) = Pla 3.

N
Proof. 1) On can write yz,(g,0;)= Z log(pkj)/p )=log H pkj)/p
Any object oJ is a compound event Thus a probability P ((q, 05)) =
= P;(6;) = H pkj, ¢ = 1,2, can be constructed: F;(6;) is a conditional

probability of 0; given relevance a; or non-relevance ag, and can thus
be denoted by P1(0;) = P(6;|a1) and P»(0;) = P(6; | aa), respectively.
P;(6;) is unique for 6;. Thus:

=1
Hence )
) _ .. P(5;]a1) _ P(5s]d
a , 04 2 a1 \4d, Os A “'] s Z O.|a
43 1((] J) Ha (q ) P(oj l az) P(Os l a2)

It follows that

P(5;]81)  P(5s |an)
P(3;|a2)  Ploslae)
& P(6;]82)P(6s | 52) — (64| 31)P(6; | a2) > 0

By Bayes’ Formula:

. )
P(a1]65) = P(6;]a,)P(a1) + P(5; | a2) P(a2)

P(a,|o,) = P(6,|a1)P(ay) + P(6s | ag)P(a2)

Hence P(d1|0;) — P(a1]0s) > 0, and thus ,ual(q,oj) > ug, (g,05) &
2) The condition ug, (g,0;) > pa,(q,0;) rewrites pg (q,0;) =
= g, (g, 6;) > ¢ (some threshold c). That is
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N (1) S
Dy P(5;]a1)
log || 7% >ce =+ 2>C>1
’g pl(c2j) P(5;]az)

Because b can be chosen such that b¢ > P(d2)/P(@,) it follows that
P(oj]a1) _ P(as)
P(o;|@2) ~ P(a1)
Using the Bayes’ Formula one gets:
P(8;]@1)P(a1) _ P(;]az)P(az)
P@;)  —  P(o)
which is equivalent to P(a|6;) > P(a2|6;) ¢
The assumptions in Lemma 1 are typical in the probabilistic
model. A special case of this lemma can be found in [39] where it
is shown that this is an optimal retrieval. Based on Lemma 1, it is now
shown that the classical probabilistic model is a special case of CIR by
showing that it is equivalent to PIR.
Theorem 2. PIR and DPIR are equivalent.
Proof. P2 becomes: R(q) = {6 : ps,(q,0) = maxg=1,..c ta,(g,0)} N
MNaa; = {5 : :u‘&i(q’a) > /j‘&j(qaa)vj =1+ (_1)i+1v /‘l‘&i(q’ 5) > ai}'
This rewrites as (Lemma 1): R(q) = {6 : P(a;|0) > P(a;|6), j =1+
+ (—1)**1, P(@;|06) > o} which is exactly the retrieval condition in
DPIR. P1 ensures that reflexivity holds too. ¢
Two special cases of PIR are as follows.
Definition 6. Binary Probabilistic IR (BPIR) is a PIR with § = {0, 1}.
Definition 7. Non-Binary Probabilistic IR (NBPIR) is a PIR with
S =1[0;1].
3.4. As a noteworthy property, it can be shown that SIR may be
conceived as a special case of PIR.
Theorem 3. Let (D,R) be a PIR. Ifay = a2 and pa, (¢,d) = pa, (d, q)
Yd, q then PIR is a SIR.

4. Relevance effectiveness measures

Given a CIR (D,TR). Let |D| = M, |TR(q)| = A # 0 (the
elements of TR(g) are said to be relevant to g), M > A. Let (D, R) be
another CIR, and let |R(q)| =k #0, |{d € R(q): d € TR(g)}| = .
The usual effectiveness measures are:

o K—a«

o
Recall: p = —, Precision: # = —, Fallout: p = .
ecall: p= — recision: m = - allout: ¢ = ——¢

Proposition 1. The ratio of recall and precision varies linearly with k.
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Proof. a = pA = w5 = p/m = /A, (1/A = constant). O
A generalization — using polynomials — of Prop. 1 is found in [2]
where the same result is obtained based on empirical axioms.

5. Basis for a mathematical theory of SIR

It is convenient to reformulate the concept of SIR as follows.
Definition 8. Let D be a set of objects and ¢ a similarity on D. A
similarity space (or o-space) on D is a 2-tuple (D, o).

Definition 9. Let (D, o) be a o-space. Similarity Information Retrieval
(SIR) on D is a 3-tuple (D, R, o) where R(d) = {z € D:0(d,z) > 7}
It is relatively easy to see that the following theorems hold.
Theorem 4. Let (E,u) be a pseudometric space. Then (E,1 — u/

/ maxg p) is a o-space.

Definition 10. Let (E, p) be a pseudometric space. Then (E,1— p/
/ maxg u) is the o-space induced on E by pseudometric p.

Theorem 5. Let (E,u) be a pseudometric space. Then the induced
topological space is a SIR on E.

Theorem 6. Let (E,p) be a pseudometric space. Then the relation
" defined as 7y < p(z,y) =0, Vz,y € E, is an equivalence relation
on E.

Let E* denote the set of equivalence classes.

Theorem 7. Let (E, u) be a pseudometric space. The space (E*, u* =
= ) is a metric space with p*(A, B) = u(z,y), A, BE E*, z € A,y €
€B.

Corollary 1. The Hausdorff space induced by metric u* is a SIR. ¢
Corollary 2. Let (E,o) be a o-space. If 6 = 1 — o is a pseudomet-
ric/metric on F, then the induced topological space/Hausdorff space on
E and SIR are equivalent. §

In [12] it is shown that BSIR = (D, o = Dice’s Coefficient), which
is a typical SIR, satisfies the theorems above. Another typical SIR,
namely (D, o =binary/nonbinary Cosine Measure), also satisfies them,
but just in general. Therefore non-metrical topologies on o-spaces are
of interest, too; they are investigated in [15], [14].

A definition of an optimality for relevance effectiveness is as fol-
lows. 7 = 1 is equivalent to R(d) being a (correspondingly defined)
Cauchy-sequence. Hence the ideal case m = 1, p = 1 yields:
Definition 11. An SIR = (D, R, o) is optimal if R(d) is the maximal
subspace of D consisting of Cauchy-sequences.
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6. Basis for a mathematical theory of PIR

Let us denote Bayes’ Decision Rule by B: P(a1|0,) > P(az|0s)-
Or simply j = 1 (relevant), 2 (non-relevant) for criterion @;, (document)
d for object 65, query ¢ for object ¢ and P,(j|d) denote P(d; | (g, 6;))-
The probabilities P,(j | d) are typically estimated using Bayes’ Formula
(see [21] for another method):

. Po(d|5)Pq()

The following equivalence holds (the cut-off value may be neglected
here): () = {d : pa(0:d) > pay(a,d)} & BR() : Py(l]d) >
> P,(2]|d) where the dot in B(.) denotes the set whose elements are
decided on. Bayes’ Formula requires that for the estimation of Py(j | d)
an initial set Ry(q) be known first, based on which P,(d | j) can be esti-
mated. Then, after an initial step, PIR can be iterated using each time
the previous R(q) to re-estimate (relevance feedback) the probabilities
Py(d] 7).
Theorem 8. Let (D,R) be a PIR,Ro(q) an initial set of retrieved
objects. Then repeatedly applying PIR yields a Diophantine set.
Proof. Given a query g. An initial set Ry(g) of retrieved documents
is obtained first. PIR is repeatedly applied in consecutive steps s =
=1,2,.... At any step s, the set R;_1(g) of the previous step is used
to estimate the probabilities Py(d|j) based on which the probabilities
P,(j|d) can be calculated — using Bayes’ Formula — and a new set
Rs(q) of retrieved documents is obtained. Let f(z,y) mean the newely
retrieved set of documents Rs(gq) at step s, where z is an integer vari-
able corresponding to query ¢ and y is an integer variable symbolising
step s when probabilities P,(j|d) are computed. Let the process of
calculating, based on relevance feedback, the new probabilities P,(j | d)
and of retrieving a new set R;11(¢q) of documents, at step s + 1, be
represented by a function ((z,y, f(z,y)). One can consider a series
Ro(q), R1(q), R2(q), - .., Rs(q), ... of retrieved documents. Thus, using
the above introduced functions, one can define a function f recursively
as follows: f(z,0) = a(z) and f(z,v + 1) = B(z,y, f(z,y)) with the
following meaning: at the initial step s = 0, i.e. f(z,0), an initial set
Ro(q) is retrieved (using e.g. a vector or interaction or another method),
represented by a(z); then, at every next step s + 1, a new set R,41(q)
is obtained, i.e. f(z,y+ 1), after repeatedly computing, based on rele-
vance feedback using the previous R;(q), the probabilities F,(j | d) and
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performing a retrieval operation again, i.e. 8(z,y, f(z,y)). Because,
formally, function f is recursively defined (primitive recursive func-
tion), the series Ro(q), R1(q), R2(g),...,Rs(q),... forms a recursively
enumerable (r.e.) set (relative to the power set p(D) where D denotes
the set of documents to be searched), and, as such, it is a Diophantine
set. O

The function f, being recursive, is computable, hence — based on
Rogers Fixed Point Theorem ([26]) — it has a fixed point. This means
that there exists an index s such that the same R; is obtained (in a
next step) when rule B is applied upon R, i.e. B (R,;) = R,. If one
assignes points to the sets R, on a surface, a fixed point corresponds to
an optimum. An important property of recall, precision and fallout is
as follows:

Theorem 9.
or A
p(l—7) M—-A"
r—a _ k—pA _ pA(l-m) o
M—A& — M—-A& ~— #n(M—DQ)
This makes it possible to define the following specific surface.
Definition 12. The level surface
3. ®y A
Y= {(x,y,z)ER e M—A}'
is called the effectiveness surface of PIR (corresponding to q).

Ideally, an IR should be such that ¢ =0, # = 1 and p = 1. Thus:
Definition 13. € = /2 + (1 — 7)2+ (1 — p)? is called the effective-
ness of PIR.

Definition 14. A PIR is optimal if ¢, m and p minimise .

In other words (constrained nonlinear optimisation):
min /7 + (1= )2 + (1= p)?

o A
p(l—7) M-A’
Alternatively, the cosine of the angle between the ideal vector v =
= (0,1,1) and the actual vector o = (y, 7, p) can also be used:

] (v,0) T+ p

T vilell T V2 Ve st 2

Thus, an optimal PIR is one with ¢, 7 and p such that

Proof. ¢ =

subject to 0<p<L1,0<r< 1.
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T+ p

max

V2 y/p? + w2+ p?
o A

= 0<p<1l 0<w<l.
p(1—m) M-—-A’ =FP= ="=
Both methods give, practically, the same global optimum (using Math-
CAD Plus 8.01 Professional): ¢ = 0.0000004, p = 1, m = 0.999.

subject to

7. Interaction IR (I'R)

Interaction IR (I?R was first defined in [7], [8] based on the con-
cept of interaction in Copenhagen Interpretation (Quantum Mechan-
ics). Given a set D = {dy,d2,...,ds,...,dn}, M > 1, of objects.
A totally bi-directionally connected Artificial Neural Network (ANN)
D-Net = (N, W, L) is associated: R = {v; : v; artificial neuron as-
signed to object d;, i = 1,2,..., M} denotes a set of artificial neurons,
L:XxXN— ]Rf”, L(v;,vj) denotes connection strengths or weights,
i,j=1,2,...,M,and W = {wy;: i,j = 1,2,..., M} denotes a set of
weights. The following conditions hold: w;; #0=wj; #0,Vi750<
< wfj < 1, Yi,j, k. The state of v; is denoted by z;. An activation
spreading takes place in D-Net.

Definition 15. Feeding a new artificial neuron v into a D-Net =
= (X, W, L) means obtaining a new D'-Net = (R, W', L") where X' =
=RU{v}, I : R x N — RYY.

W' contains more weights than W hence |W'| > |W |, W\W #
# (. One can distinguish three cases: a) W’ contains the new weights
for the fed v and all of the old weights unchanged, b) W' contains
the new weights for the fed v and all of the old weights changed, c) W'
contains the new weights for the fed v and both changed and unchanged
old weights.

Definition 16. Let (X, W, L) be a D-Net and (X, W', L’) be a fed
D'-Net. The set difference W/\W is interaction I between v and D-Net,
I = W/\W. When only a) occurs (see above), interaction is called a
pseudo-interaction: I = W'\W = {w,;,w},,Vj}. When b) or c) or
both occur (see above), interaction is called a real interaction: I =

The nonclassical model of IR is defined as follows:

Definition 17. Let (R, W, L) be a D-Net and (X' = RU{yg}, W', L’) an
associated fed D'-Net. Interaction Information Retrieval (IIR = I°R)
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on D' is a 2-tuple (D', R) where R(¢) = {d; : v is a winner in an
activation spreading started at v,}.
7.1. CIR as a special case of I’R

As a noteworthy property, it is now shown that the classical IR is
a special case of I°R.
Theorem 10. Given an I?R, an arbitrary fized k > 1, a threshold
value o and vg. Ifi) K;; = C = constant > 1, Vi, 7, i) L(v;,v;) = 1,
iii) z; < 4f (wh; = max, wp;) A (wh; > ag) then set z; to ‘ winner’ else
0, ¢ # j; iv) after the first step, stop activation; then I°R is equivalent
to CIR. :
Proof. I’R with conditions i)-iv) satisfies properties P1 and P2 of
CIR. Condition i) K;; = C = constant, V¢, j is viewed as the number
C of criteria. L is viewed as membership function p : w}; = pa, (dg, d;).
Condition ii) L(v;,v;) = 1 corresponds to P1: L(v;,v;) =1 & wf, =1,
Vp < pa, (vi,vs) = 1, Vp. R(q) in I’R is equal to R(q) = {d; : v;
is a winner in an activation started at v4} which rewrites as R(g) =
= {d;j : vj, (w = maxpwh; A (wp,; > ax)} = {d; : vj, pa, (v, v5) =
= MaXp=1,..,C Ha, (Vg V) } N {d; 1 vj, pa, (vg, vg) > o} O

It can be said that CIR is an I’R with pseudo-interaction.
7.2. Associative I’R (AI’R)

A different type of IR is that in which a real interaction takes
place.

Definition 18. A reverberative circle ¢ is a sequence ¢ = v/,..., VP, ...,
vV of artificial neurons where: v’ = vV and v? is a winner, i.e. is the
most active of all elements succeeding its predecessor (p — 1 denotes
predecessor), i.e. v? such that z, = max;{z; : wp_1; #0,p—1# j}.
Definition 19. An element v recalls a reverberative circle ¢ if ¢ is
formed due to an activation spreading originating at v.

Stability in implementation is guaranteed by the following:
Theorem 11. There exists at least one reverberative circle ¢ in a
D-Net recalled by a non-isolated element v.

An I°R with real interaction is now defined.

Definition 20. Let (X, W, L) be a D-Net and (X', W', L'} an associated
fed D'-Net. Associative Interaction Information Retrieval (AI’R) on
D’ is a 2-tuple (D,R) where R(¢) = {d; : v; € ¢, ¢ recalled by non-
isolated v, }.

Specific properties, including implementation, are investigated
in [29], [25], [30, [22], [28], [24], [9]. [10], [11], [31], [3].
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The mathematical structure of retrieval is as follows:
Theorem 12. Retrieval in AI?R means defining a matroid.
Proof. (X', W' L') can be assigned a complete, directed, weighted
multigraph G as follows: i) each artificial neuron v; is assigned a vertex
v;, i) there are two oppositely directed edges (opposite arcs), e;; and
eji, between every pair of vertices v; and v; (¢ # j) havmg weights

Kij
ui; and uj; respectively, where u;; = Z w” and uj; = Z wjZ Any

reverberative circle ¢ corresponds to a cm:le C in graph G' Let N =
= {v,:a=1,2,..., A} denote the artificial neurons traversed before
¢ is recalled by v4. Then N corresponds to a path P = {vg 1 @ =
=1,2,...,A}. This means that retrieval defines a connected subgraph
H with circles and cutpoints. Hence a block-cutpoint graph T' can be
assigned to subgraph H which generates its cycle matroid. ¢

A definition of optimal effectiveness, for an implemented IR, can
be given as follows. Ideally: m = 1p = 1. Thus:
Definition 21. An (implemented) AI°R is optimal if R(q) is a matroid.

8. Special topics

8.1. Boolean and Cluster IR.

Let (D, R) be an IR, i.e. AI°R or CIR (SIR or PIR), and let
(qr)k=1,....x be a series of objects (-queries), and @ = ®(gx) be a
Boolean expression over g in a normal form.

Definition 22. Boolean IR (BIR) over (D, R) is a 2-tuple (D, 3) where
B =& (Re)Rk = R(gr). ®' is a logical counterpart of ®.
Definition 23. Cluster IR: D is a set of cluster representatives, and

retrieval any of the previous ones.
8.2. Comparison of CIR and MADM.
Let X = {:r:l, Ty...Tj,...,Tn} be a set of alternatives, and G =

= {A},Ay...... Al__.AC} a set of goals. Each goal A; is assigned a
weight w; representing its “importance”. The attainment of goal 4
by alternative z; is expressed by the degree of membership p 4. (z5)-
Decide on an optimal alternative ([40]). The decision IV is defined as
follows: N = EBA;“" where @ denotes the “confluence operator”. The
optimal alternative z* is defined as pug(z*) = max;—1.. a p(z;). The
set X corresponds to set D of objects, and the set G of goals to set A
of criteria. The criteria do not have weights in CIR, w; = 1.



Foundation of information retrieval 149

An equivalence between CIR and MADM (Multi-Attributive De-

cision Making) can be shown.
Theorem 13. Ifi) the confluence operator & is the fuzzy union, w; =
= 1, Vi; ii) 4 in property P2 of CIR corresponds to z*; iii) pz (z;) >
> pg, (z4), Vi, k then CIR and a repeatedly applied MADM, after delet-
ing the already selected alternative, are equivalent.

The results in [36], [37] can be consistently build on this theorem.
8.3. Computational complexity in IR.

Computational complexity aspects are reflected in the following

two theorems.

Theorem 14. CIR is in the P-Class. ¢

Theorem 15. AI’R is in the NP-Class.

Proof. The number s(M,p) of evaluations is s(M,p) = M -

M
(M—-1+ > (1;1 )) where M denotes the number of elements and p is
p=1

the maximum number of most active elements. Because s(M,p) = M -
M

(M-1+ > (M) =M-(M—-1+2" —1) = 0(2M) AI’R s in the
p=1

NP-Class.
8.4. Comparison between I’R and Situation IR.

Situation IR (SITIR) is a logic model of IR [18] based on Situation
Theory [6]. Because SITIR aims at an axiomatic approach towards
IR, a formal comparison between SITIR and I?R can be made. We
should note, however, that SITIR is not concerned with measuring the
uncertainty of the suggested plausible inferences, hence its concept of

retrieval is not defined. Thus, the comparison cannot be complete.
The SITIR model is defined as follows. Given a set D = {di :

k= 1,2,...,M} of documents. Let S = {sp : k = 1,2,..., M}
be an associated set of situations, where situation sy = {igp : Ikp =
= ((Rkp,akl,...,aknp,Ikp)),p = 1,...,pk}, k= 1,2,...,M, is a set
of infons. Retrieval is not defined in SITIR (mathematically nor im-
plementably). A concept of situation aboutness ~ is suggested: sj ~
~ 8; < Fi, € si[sk ir]. Depending on how > is defined, a Boolean
or a Coordination Level Matching (CLM) model is obtained. In CLM
this simply reduces to si ~» s; < spNs; # 0. As to the Boolean model:
we have already seen that this is a method of precessing a query rather
than a basic model. An element vy, of I?R's D-Net is assigned the fol-
lowing situation sg = {ikp : ixp = ((Rkp, Wip, Lkp)), V0 # k}. Situation
aboutness s; ~+ s; < Ji, € 5;[sgf> 1] is defined as si ~ s; & Wi # 0.
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9. Conclusions, remarks

A unified mathematical foundation and theory for IR are cre-
ated, for the first time. The following is a schematic of their structure
(D=definition, T=theorem):

'R
CIR
AI’R SIR PIR
[ BSIR NBSIR | [ BPIR NBPIR |

Thus, IR becomes a mathematical and hence a natural scientific
discipline, too.

SIR’s particular structure, the o-space, is characterized by non-
metric topologies in general, and metric induced topologies (in Banach-,
Hilbert, Euclidean-spaces) in typical cases, and it should therefore gain
mathematical status. The o-space can also be a link between SIR and
van Rijsbergen’s Information Logic: ¢ may be viewed as a measure for
the minimal extra information principle.

The problem of considering a concept of infinity in SIR is to be
investigated considering that M and R(q) can already be in the millions
nowadays (e.g. in Internet searching).

The mathematical formulation of relevance effectiveness (maximal
subspace consisting of Cauchy-sequences in SIR, recursion fixed point
as constrained nonlinear optimisation in PIR, and matroid consisting
of associated local memories in AI2R) is also given.

Links between IR and modern mathematical disciplines (Func-
tional Analysis, Recursion Theory, Matroid Theory, Complexity The-
ory, Decision Theory, Fuzzy Sets Theory) are formally created. The
manifoldness of these links reflect that of IR itself. And yet, IR now
has its own unified mathematics: language, style, content.
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