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Abstract: An uncountable collection of uniformly arcwise connected plane
Suslinian dendroids is constructed which shows that the negations of the
following properties: local connectedness, smoothness, pointwise smoothness,
hereditary contractibility, and selectibility are not countable in this class of

curves.

Let S be a class of spaces and let P be a property. We say that
the property P is finite (countable) in S provided that there is a finite
(countable, respectively) set F C S such that a member of S has the
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property P if and only if it contains a homeomorphic copy of a member
of 7. For example, the property of being nonembeddable in the 2-
sphere S? is finite in the classes of graphs and of local dendrites by the
classical result of Kuratowski [10], and in the class of locally connected
continua by the well-known result of Claytor [7]. Nothing similar is true
for nonplanability of curves that are not locally connected. Namely it
was shown that the property of being nonplanable is not countable in
the classes of smooth dendroids [6] and of (nonsmooth) fans [14].

Let us note that the following proposition (which is a consequence
of the definition) was used in the above results.

1. Proposition. Let a class S of spaces and a property P of members
of § be given. If there exists an infinite (uncountable) collectionC C S
such that

(2) every member of C has the property P, and

(3)  for every two distinct members Cy and Cy of C if a member Y of

S is topologically contained in both Ci and Cy, then' Y does not

have the property P ,
then the property P is not finite (countable, respectively) in the class S.

The same method, exploiting Prop. 1, was used in [19] to show
that the property of not being contractible is not countable in the class
of (semi-smooth) fans.

A property P of continua is said to be hereditary provided that if
a continuum X has P, then each subcontinuum of X has P, too.

The following statement is a consequence of the definitions.

4. Statement. If a property non-P is either finite or countable in a
class S of continua, then the property P is hereditary.

The aim of this paper is to show that the negations of the following
properties: smoothness, pointwise smoothness, hereditary contractibil-
ity and selectibility are not countable in the class of uniformly arcwise
connected plane Suslinian dendroids. This will be done using one un-
countable collection of dendroids each having all the needed properties.

We recall the necessary definition first. By a continuum we mean
a compact connected metric space. A one-dimensional continuum is
called a curve. A dendrite means a locally connected continuum con-
taining no simple closed curve. A dendroid is defined as an arcwise
connected and hereditarily unicoherent continuum. Thus each dendrite
is a dendroid, and each dendroid is a curve ([1, (48), p. 239]). An arc
A with end points p and ¢ contained in a space X is said to be free if
A\ {p, q} is an open subset of the space. A continuum X is said to be
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uniformly arcwise connected provided that it is arcwise connected and
that for each € > 0 there is £ € N such that for every arc A C X there

are points ag, a1,...,ax € A such that
A:U{aiaiﬂ 11 E {O,l,...,k——l}}
and diama;a;+1 < € for each ¢ € {0,1,...,k — 1} (i.e., if each arc in

X contains k£ + 1 points which cut the arc into subarcs of diameter

less than €). Note that uniform arcwise connectedness is a hereditary

property. It is shown in [2, Th. 19, p. 194] that uniform arcwise connect-

edness is an invariant under continuous mappings between dendroids:

(5) If a dendroid Y is the image of a uniformly arcwise connected
dendroid X under a continuous mapping, then'Y is also uniformly
arcwise connected.

We shall use the notion of order of a point in the classical sense
(i.e., the number of arcs emanating from the point and mutually disjoint
out of it, see [1, p. 229]), and we denote by ord (p, X) order of the space
X at a point p € X. Points of order 1 in a space X are called end
points of X; the set of all end points of X is denoted by E(X). Points
of order at least 3 are called ramification points of X; the set of all
ramification points of X is denoted by R(X). A dendroid that has
exactly one ramification point is called a fan. A fan is called a simple
triod (a simple 4-od) if its ramification point is of order three (of order
four, respectively).

A continuum X is said to be Suslinian provided that each collec-
tion of pairwise disjoint nondegenerate subcontinua of X is countable,
[13]. Suslinian continua are hereditarily decomposable, and thus one-
dimensional.

A dendroid X is said to be smooth at a point p € X provided
that for every sequence of points z,, of X converging to a point z the
sequence of arcs pz, converges to the arc pz. A dendroid X is said
to be smooth provided that there exists a point p € X at which X is
smooth. The following fact is known.

(6) FEvery dendrite is smooth.

A dendroid X is said to be pointwise smooth provided that for each
point z € X there is a point p(z) € X such that for every convergent
sequence of points z,, of X the condition lim z,, = z implies that the
sequence of arcs p(z)z, is convergent, and Lim p(z)z, = p(z)z.

A continuum X is said to be contractible provided that there are
a homotopy h : X x [0,1] = X and a point p € X such that for every
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point z € X we have h(z,0) = z and h(z,1) = p. For example a disk
is contractible, while a simple closed curve is not. The following results
concerning contractibility of curves are well-known (see e.g. [3]).

(7) Ewery contractible curve is a dendroid.

The inverse is not true, and the main problem related to con-
tractibility of curves is to find a structural characterization of con-
tractible dendroids.

(8) Ewvery contractible dendroid is uniformly arcwise connected.
(9) A locally connected curve is contractible if and only if it is a den-
drite.

It is known that contractibility (of dendroids) is not a hereditary
property, even in the class of plane Suslinian fans (see e.g. [5, Prop. 12,
p. 234]). Hence the following is a consequence of Statement 4.

(10) Noncontractibility is not a countable property in the class of plane

Suslinian fans.

Recall that the above result was proved in [19] using a more complicated
argument, viz. Prop. 1. Hereditary contractibility of dendroids implies
pointwise smoothness, while the opposite implication remains an open
question, [8].

Given a metric space X with a metric d, we denote by 2% the space
of all nonempty compact subsets of X equipped with the Hausdorff
distance H defined by

H(A, B) = max{sup{d(a, B) : a € A}, sup{d(b, A) : b € B}}.

Further, C(X) means a subspace of 2% composed of all (nonempty
compact) connected subsets of X. If X is a continuum, C(X) is called
the hyperspace of subcontinua of X. A continuous selection for a family
F C 2% is defined as a mapping o : F — X such that o(4) € A for
each A € F. Answering a question of Michael [16] Kuratowski, Nadler
and Young characterized [12] locally compact separable metric spaces
X for which there exists a continuous selection for 2%. In particular,
they proved that if a continuum X admits such a selection, then X is
an arc. Since each arc admits such a selection (taking o(A) = min A,
for example), we infer the following assertion.
(11) A continuum X admits a continuous selection for 2% if and only
if X is an arc.
So, the problem of finding a structural characterization of continua that
admit a continuous selection for a given family F C 2% is solved in the
case when F = 2%,
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Another very interesting case is when F = C(X). A continuum
X is said to be selectible provided that it admits a continuous selection
for C(X). The following important results in this area were obtained
by Nadler and Ward [17].
(12) Every selectible continuum is a dendroid.
(13) A locally connected continuum is selectible if and only if it is a
dendrite.
(14) Each selectible dendroid is a continuous image of the Cantor fan,
so it is uniformly arcwise connected.
-On the other hand, there are uniformly arcwise connected dendroids
which are not selectible, as one pictured in [17, Fig. 1, p. 372], and
again the main problem related to selectibility of curves is to find a
structural characterization of selectible dendroids.
15. Remark. Note that since selectibility for C(X) implies that the
continnum X is a dendroid (12), we can restrict our considerations
concerning selectibility to dendroids only. In this case nonselectibility
for 2% is a finite property, namely the collection C in matter consists
of the simple triod only.
Some conditions are known that imply nonselectibility of den-
droids. A dendroid X is of type N between its points p and g if there

are two sequences of arcs p,p], and g¢,g), in X and points p/! € gnq/, \

\{an, q,} and g € prpp \ {Pn, P, } with
pq = Lim p.p;, = Lim g,.qy,
p=limp, =limp), =limp, and ¢=Ilimg, =limg), = limg/.

The above concept is due to L. G. Oversteegen [18] and is related to
the following condition of B. G. Graham [9]. A dendroid X is said to
contain a zigzag between its points p and ¢ provided there exist in X a
sequence of arcs p,¢, and two sequences of points p], and ¢/, situated
in these arcs in such a manner that p, < ¢, < pl, < g, (where <

< denotes the natural order on p,g, from p, to g,), for which the
following conditions hold:
pq =Limpng,, p=lmp, =limp,, ¢=limg, =limg,.
Note that if a dendroid contains a zigzag between its points p and g,
then it is of type N (between these points) but not conversely, even for
fans. The next fact follows from the definitions.
(16) If a dendroid is of type N (if it contains a zigzag, in particular),
then it is not smooth and is not pointwise smooth.
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The following statement is shown in [18, Th. 2.1, p. 838].

(17) If a dendroid is of type N (if it contains a zigzag, in particular),
then it is not contractible.

Maékowiak introduced [15] the following concept. Let a contin-
uum X and two its subcontinua A and B with B C A be given. Then
B is called a bend set of A provided that there are two sequences {A,}
and {A’} of subcontinua of X such that A, N A, # 0 for every n €N,
and

A=LimA, =Lim A/, and B =Lim(4,NA4,).

We say that X has the bend intersection property if for each subcon-

tinuum A of X the intersection of all bend sets of A is nonempty. The

following assertion is proved in [15, Cor., p. 548].

(18) FEach selectible dendroid has the bend intersection property.

Note that if a dendroid X is of type N between some points p,q €
€ X, then the singletons {p} and {q} are bend sets of Limp,p; =
= Lim ¢,q},. Thus, by (18), the following holds.

(19) If a dendroid is of type N (if it contains a zigzag, in particular),
then it does not have the bend intersection property, so it is not
selectible.

Let a sequence of mutually disjoint continua {X,, : n € N} (lying
e.g. in the Hilbert cube) be given, which is tending to a point p. For
each n € N choose two points a,, and b, in X,,, and consider a sequence
of mutually disjoint arcs {b,an4+1 : n € N}, also having the point p as
the only point of its topological limit, and such that

0 if n#£#m#n+1,
Xm Nbpanyr =< {bn} if n=m,
{ant1} i m=n+1.
Then the set defined by

(20) X ={p} U f{XnUbnans1 :neN}

is a continuum, which is called a string of continua X,. Each continuum
X, is called a bead of the string, the points a,, and b,, are called extreme
points of the bead X,,, and the point p is called the final point of X.

Observe that each arc bha,41 is a free arc in the string X, that
the final point p is an end point of X, and that

Lim X,, = Limbnan+1 = {p},
whence it follows that lim diam X,, = limdiam b,a,,4+1 = 0.
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We shall use the concept of a string exclusively in the case when
each bead X, is a dendrite and when the extreme points a,, and b,, are
end points of X,,. It is easy to verify that then the string X constructed
according to (20) is a dendrite. In such a case we will say that X is a
string of dendrites (see [4, Chapter 6, p. 27 ff], where this concept is
introduced and studied).

Let S be the set of all zero-one sequences. We define an equiva-
lence relation ~ on S as follows. If r,s € S with r = (ry,73,...) and
s = (81, 82,...), then r ~ s if there exist positive integers i and j such
that

(21) Ti+n = 8j4+n for each n € N.

Thus ~ is an equivalence relation on S and the equivalence classes are
countable. Hence, the set

(22) T=8/~

of equivalence classes of S is uncountable. We shall construct, for each
t € T, a uniformly arcwise connected plane Suslinian dendroid X (t).
We take as P the negation of any of the following: local connectedness,
smoothness, pointwise smoothness, hereditary contractibility, and se-
lectibility. It will be shown that the collection C of the constructed
dendroids satisfies conditions (2) and (3) of Prop. 1, and therefore the
main result of the paper will be proved.

To this aim put (in the Cartesian coordinates in the plane) p =
= (0,0), a; = (1,0), and take in the closed unit interval from p to a; of
the z-axis two sequences of points {a, : n € N} and {b, : n € N} such
that

(23) p =lima, = limb,
and that, in the natural ordering < of the segment pa;,
(24) P< < bpp1<apy1 <bp<ap < - <b <aj.

For each n € N let ¢, stand for the center of the segment b,a,,. Denote
by By (0) the simple triod ¢,a, U ¢,b, U ¢, d,, and by B, (1) the simple
4-od cpapn Ucpb, Ucnd, Ucpe, such that all their arms are straight line
segments of equal length, and all are situated in the upper half plane.

Next, for each element ¢ € T select a representative r(¢) € S such
that [r(t)] = t. Let r,(t) € {0, 1} be the n-th term of the representative
r(t) € S. Consider, for each t € T, a string D(t) of dendrites X, (t)
such that
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(25) Xn(t) = Bn(rn(t)) for each n € N,
For each t € T we put, according to (20),
(26) D(t) = {p} U| J{Xn(t) Ubnant1 : n € N}

We construct, for each t € T, the dendroid X (t) by adding to the
dendrite D(t) a sequence of arcs {A(¢, k) : k € N} which approximate
D(t) in a special way. Let an element ¢ € T be fixed. To define the arc
A(t, k) we perform the following construction.

We start with defining a continuous surjective mapping fo : pa; —
— D(t). Put fo(p) = p, and for each n € N let fo(an) = an and
fo(b,) = b,. We divide each straight line segment a,1b, into three
equal parts by points b*,, and a*,4+1 such that

(27) Ant1 < 0% p < a*ni1 < by
(compare (24)), and we put fo(b*n) = bn and fo(a*ni1) = any1. Next
consider two cases. First, if r,(t) = 0, we divide each straight line
segment b,a, into four equal parts by points c*,, ¢, and cj;* such that
by, < c*, < ¢ < C* < a, (compare (24)), and we put
fO(c*n) = Cn, fO(Cn) = dn’ and f()(C:*) = Cn-

Second, if r,(t) = 1, we divide each straight line segment b,a, into six
equal parts by points ¢*,, d*n, cn, €*n and c;* such that

by <cp<d'p<cp<ep<ct<ap
(compare (24)), and we put

fol€*n)=cn, fo(d*n)=dn, folcn)=cn, fo(e*n)=en and fo(c;") = cn.
So, the mapping fo is now defined either at the points

(28) p< <y << <G <an << ay

(if 7, (t) = 0), or at the points

(29) p<- << <d'p<cp<en<cy <a, < - <o

(if r,(t) = 1). For each straight line subsegment uv of the segment pa,
whose end points u and v are two consecutive points listed in either (28)
or (29) we extend fy linearly, i.e., we define foluv : uv — fo(u)fo(v) C
C D(t) as a linear mapping. Since each point of pa; \ {p} belongs
to some uwv, and since the singleton {fo(p)} together with the images
fo(u) fo(v) (running over all segments uv considered above) cover D(t),
we see that the mapping fo : pa; — D(¢) is a well-defined continuous
surjection.
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Consider the harmonic fan Fy defined as the cone with the vertex
p = (0,0) over the set {(1,1/k) : k € N}. Thus, if g5 = (1,1/k), and
if pg means the straight line segment with end points p and ¢ in the
plane, we have

Fyg =pa; U U{qu : k € N}

The mapping fo : pa; — D(t) induces a mapping f of Fpy into
the upper half plane {(z,y) : y > 0} such that flpa; = fo and that
the partial mapping f||U{pgx : k& € N} is one-to-one. Consequently,
for each k € N, the partial mapping f|pgr is a homeomorphism of
the straight line segment pg; onto an arc A(t, k) from p to a point
q(t,k) = f(gx) such that limg_, ¢(¢, k) = a;. We can assume that
the arc A(t, k) is the union of the singleton {p} and of countably many
straight line segments described as follows. For each £ € N and for
each straight line subsegment uv of the segment pa; considered above
(ie., u and v are two consecutive points listed in either (27) or (28))
we denote by u(t, k)v(t, k) the subsegment of pgx that projects onto uv;
then flu(t, k)v(t, k) is a linear mapping of u(t, k)v(t, k) onto a straight
line segment f(u(t,k))f(v(t, k)) in the upper half plane which is close
to the segment fo(u)fo(v) C D(¢) in the sense that

(30) Lim ko0 f (u(t, k) f (v(¢, ) = fo(u) fo(v) C D(2).
Now A(t, k) is the union of {p} and of countably many straight line

segments of the form f(u(t, k))f(v(t, k)).
Further, we can assume that

(31) A(t, k) N D(t) = {p},

(32) if kl 75 kg, then A(t, kl) N A(t, kz) - {p}

By continuity of f we have

(33) D(t) = Lim 00 A(t, k).

Finally we define

(34) | X(t) = £(Fa).

Thus X (t) is a plane continuum. By the construction above we see that
(35) X(t)=D(t)u| J{A(tk): k e N}.

Conditions (31) and (32) guarantee arcwise connectedness and heredi-
tary unicoherence of X (t), so X (¢) is a dendroid. It follows from (33)
and (35) that it is Suslinian. Uniform arcwise connectedness of the
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harmonic fan Fp implies that of X (¢) by its definition (34) according
to (5).

Let us come back to the definition of the mapping f, and consider,
for a fixed k € N and for an arbitrary n € N, the subsegment

o) anit B)bat, ) =
B8) 1 (E k)b (£, K) U B (b, k)@ n (£, B) U @ nsa (8, E)bn(E, )

of the segment pgy that projects onto an41b, (see (27)). Recall that
the partial mappings of f restricted to each of the three segments in
the right member of equality (36) are linear, so that we have a broken
line from f(an4+1(t,k)) to f(b,(t,k)) consisting of three straight line
segments. By the limit condition (30) in which we substitute for the pair
(u, v) pairs of consecutive points of (27) we conclude that the sequence
of arcs {f(an+1(t, k))f(bn(t,k)) : k € N} together with its limit arc
an+1bn, form a zigzag in X (t) between a,1 and by,.

Moreover, note that if a subcontinuum Y of X(¢) is not locally
connected, then the set of points of non local connectedness of Y con-
tains all the dendrites X, (¢) Ubpan41 from some sufficiently great n on.
Hence
(37) for each subcontinuum Y of X(t) that is not locally connected

there exists ng € N such that Y contains the union |J{X,(t) U

Ubpantr :n € Nand n > ng}, and Y intersects infinitely many

arcs A(t, k),
whence it follows from the construction of X (¢) that
(38) each non locally connected subcontinuum of X(t) contains a

zigzag,
and therefore, by (16), (17) and (19), we infer that
(39) each subcontinuum Y of X (t) that is not locally connected is not:

smooth, pointwise smooth, (hereditarily) contractible, and se-

lectible.
40. Proposition. Let the set T be as in (22), and for eacht € T let
X (t) be defined by (34). Take the collection

C={X(t):teT}.

If a continuum Y is topologically contained in some two members C; =
= X (t1) and Cy = X (t2) of C with t| # to, then'Y is a dendrite.
Proof. In fact, if not, then Y is a subcontinuum of both X (¢1) and of
X (t2) which is not locally connected. Then by (37) there are n; and nj
in N such that Y contains all the beads X, (¢1) of the string D(¢;) for
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every n > n; and all the beads X,,(¢2) of the string D(¢3), and these
beads appear in both D(¢;) and D(t3) in the the same order. Thus
it follows from (25) that if ¢ = j = max{ni,no}, then for each n € N
we have riyn(t1) = rj4n(t2), whence, according to the definition of the
relation ~, we infer that ¢; = ¢5, a contradiction. ¢

Now let S be the class of dendroids such that
(41) S contains the collection C = {X (t) : t € T}.

For example, one can take as S the class of uniformly arcwise connected
dendroids, or the class of Suslinian dendroids, or of plane ones, or any
intersection of these classes. Further, take as P any property such that

(42) no dendrite has the property P.

Let a continuum Y be as in Prop. 40. Thus Y is a dendrite, and

by (42) it does not have the property P, and so condition (3) of Prop. 1
is satisfied. Thereby the following result is established.
43. Theorem. Let S be a class of dendroids satisfying (41), and let
a property P be such that no dendrite has the property P (see (42)).
If there exists an uncountable collection C of members of S such that
every member of C has the property P (see (2)), then the property P is
not countable in the class S.

Taking as P the negation of one of the following: local connect-

edness, smoothness, pointwise smoothness, hereditary contractibility,
and selectibility, we see that (42) holds (compare in particular (6), (9)
and (13)). Thus taking C = {X(¢) : t € T} we see by (39) that (2) is
satisfied, and therefore all the assumptions of Th. 43 hold true. Thus
we have a corollary.
44. Corollary. The negation of each of the following properties: lo-
cal connectedness, smoothness, pointwise smoothness, hereditary con-
tractibility, and selectibility, is not countable in any class S of dendroids
satisfying condition (41).

References

[1] CHARATONIK, J. J.: On ramification points in the classical sense, Fund.
Math. 51 (1962), 220-252.

[2] CHARATONIK, J. J.: Two invariants under continuity and the incompara-
bility of fans, Fund. Math. 58 (1964), 187-204.

[3] CHARATONIK, J. J.: Problems and remarks on contractibility of curves,
General Topology and its Relations to Modern Analysis and Algebra IV, Proc.




136

J. J. Charatonik and J. W. Charatonik: A collection of dendroids

Fourth Prague Topological Symposium, 1976; Part B Contributed Papers,
Society of Czechoslovak Mathematicians and Physicists, Prague, 1977, 72-76.
CHARATONIK, J. J., CHARATONIK, W. J. and PRAJS, J. R.: Mapping
hierarchy for dendrites, Dissertationes Math. (Rozprawy Mat.) 333 (1994),
1-52.

CHARATONIK, J. J. and GRABOWSKI, Z.: Homotopically fixed arcs and
the contractibility of dendroids, Fund. Math. 100 (1978), 229-237.

CHARATONIK, J. J. JANUSZKIEWICZ, L. T. and MACKOWIAK, T.: An
uncountable collection of nonplanable smooth dendroids, Bull. Acad. Polon.
Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977) 147-149.

CLAYTOR, S.: Peanian continua not imbeddable in a spherical surface, Ann.
of Math. 38 (1937) 631-646.

CZUBA, S. T.: On dendroids for which smoothness, pointwise smoothness and
hereditary contractibility are equivalent, Commentat. Math. Prace Mat. 25
(1985) 27-30.

GRAHAM, B. G.: On contractible fans, Fund. Math. 111 (1981) 77-93.

KURATOWSKI, K.: Sur le probléme des courbes gauches en Topologie, Fund.
Math. 15 {1930) 271-283.

KURATOWSKI, K.: Topology, vol. 2, Academic Press and PWN, 1968.

KURATOWSKI, K., NADLER Jr., S. B., and YOUNG, G. S.: Continuous
selections on locally compact separable metric spaces, Bull. Acad. Polon.
Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 5-11.

LELEK, A.: On the topology of curves II, Fund. Math. 70 (1971) 131-138.

MACGCKOWIAK, T.: A certain collection of non-planar fans, Bull. Acad.
Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 543-548.

MACKOWIAK, T.: Continuous selections for C(X), Bull. Acad. Polon. Sci.
Ser. Sci. Math. Astronom. Phys. 26 (1978) 547-551.

MICHAEL, E.: Topologies on spaces of subsets, Trans. Amer. Math. Soc.
71 (1951), 152-182.

NADLER Jr., S. B. and WARD Jr., L. E.: Concerning continuous selections,
Proc. Amer. Math. Soc. 25 (1970) 369-374.

OVERSTEEGEN, L. G.: Non-contractibility of continua, Bull. Acad. Polon.
Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 837-840.

OVERSTEEGEN, L. G.: An uncountable collection of noncontractible fans,
Bull. Acad. Polon. Sci. Ser. Seci. Math. 27 (1979), 385-389.





