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Abstract: In this note, a fixed point theorem for condensing maps is used
to investigate the existence of solutions of an integral inclusion in Banach

spaces.

1. Introduction

In the past few years, several papers have been devoted to the
study of integral equations by different authors under different condi-
tions on the kernel (see for instance [4], [5], [6], [12], [13] and their
references). However very few results are available for integral inclu-
sions see [3], [8], and [14]. :

The fundamental tools used in the existence proofs of all above
mentioned works are essentially fixed point arguments or iterative meth-
ods.

In this note, we shall be concerned with the existence of solutions
of the integral inclusion:
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1)y e / K(t,5)F(s,y(s))ds + g(t) for teJ:=[0,T]

where F': J x E — E is a bounded, closed, convex multivalued map,
K:D—R, D={t,s)edJxJ:t>s},g:J— E and E areal
Banach space normed by |.|.

The method we are going to use is to reduce the integral inclusion
(1.1) to the search for fixed points of a suitable multivalued map on the
space C(J, F) and we make use a fixed point theorem for condensing
maps due to Martelli (see [11]).

2. Preliminaries

In this section, we introduce notations, definitions, and results
which are used throughout this paper. C(J, E) is the Banach space of
continuous functions from J into F with norm

llyllo = sup{|y(¢)| : t € J} forall ye C(J,E).

Let y : J — FE be measurable function. By fOT y(s)ds, we mean the
Bochner integral of y, assuming it exists. A measurable function y :
: J — E is Bochner integrable if and only if |y| is Lebesgue integrable.
For properties of Bochner integral see [15]. L'(J, E') denotes the Banach
space of functions y : J — E Bochner integrable normed by

T
[ :/|y(t)|dt forall ye L}(J,E).
0

L*(J,R) is the space of essentially bounded measurable functions ¥ :
:J — R

Let (X, ||.||) be a Banach space. A multivalued map G: X — X
is convex (closed) valued if G(z) is convex (closed) for all z € X. G
is bounded on bounded sets if G(B) is bounded in X for any bounded
set B of X (i.e. sup,cg{sup{|lyll : v € G(z)}} < o0). G is called
upper semicontinuous (u.s.c.) on X if for each zg € X the set G(zp)
is a nonempty, closed subset of X, and if for each open set B of X
containing G(zp), there exists an open neighbourhood A of zy such
that G(A4) C B.
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G is said to be completely continuous if G(B) is relatively compact
for every bounded subset B C X.

If the multivalued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph (i.e.
Tpn — Lo, Yn — Yo, Yn € G, imply yo € Gxp).

G has a fixed point if there is € X such that z € Gz.

In the following BCC(E) denotes the set of all bounded, closed,
convex and nonempty subsets of E. :

A multivalued map G : J — BCC(X) is said to be measurable
if for each £ € X the distance between z and G(t) is a measurable
function on J.

An upper semi-continuous map G : X — X is said to be con-
densing [2] if for any subset B C X with a(B) # 0, we have a(G(B)) <
< o(B), where o denotes the Kuratowski measure of noncompact-
ness [2].

We remark that a completely continuous multivalued map is the
easiest example of a condensing map. For more details on multivalued
maps see [1], [7].

Let us list the following hypotheses:

(H1) F : J x E — BCC(E); (t,y) — F(t,y) is measurable
with respect to ¢ for each y € F, u.s.c. with respect to y for each t € J
and for each fixed y € C(J, E) the set

Sy ={fy € L"J,E): f,(t) € F(t,y(t)) forae ¢teJ}

is nonempty;
(H2) for each t € J, K(t,s) is measurable on [0,t] and

K(t) = ess sup{|K(¢,s)], 0<s<t},

is bounded on J;

(H3) the map t — K; is continuous from J to L*°(J,R); here
Ki(s) = K(t,s);

(H4) g: J — E is a continuous single valued-map;

(HS5) there exist a continuous nondecreasing function 1 : [0, co)—

— (0, 00) with [ ;p%i—) = oo and p € LY(J,R,) such that
0

I1E @ )|l = sup{|v| : v € F(t,y)} < p(t)¥(|yl)
for a.e.t € J and all y € E;

(H6) for each bounded set B C C(J, E) and y € B the set
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{/K(t, s)fy(s)ds +g(t) : fy € SF,y}

is relatively compact for each t € J.
Remark. If dim E < oo, then Sp,, # 0 for any y € C(J, E) (see [10]).
By a solution of (1.1), we mean a function y € C(J, E) that sat-
isfies the integral inclusion (1.1) on J.
The following lemmas are crucial in the proof of our main result:

Lemma 2.1. [10] Let F' be a multivalued map satisfying (H1) and let
T be a linear continuous mapping from L*(J, E) to C(J,E). Then the
operator

I'oSp:C(J,E) — BCC(C(J,E)), y— Lo Sr)(y) :=T(Sry

is a closed graph operator in C(J,E) x C(J, E).
Lemma 2.2. (Lemma 1.5.3 [9]) If p € LY(J,R}) and ¥ : Ry —
— (0, 00) is increasing with

o0
/ du
(u)
0
then the integral equation

z(t) = zo + /p(s)zﬁ(z(s)), for teJ,

has for each zop € Ry a unique solution z. If u € C(J, E) satisfies the
integral inequality

u(t)] < 20+ / p(s)p(lu(s))ds on J,

then |u| < z.
Lemma 2.3. [11] Let X be a Banach space and N : X — BCC(X)
a condensing map. If the set

M:={yeX:yeN(y) forsome A>1}
is bounded, then N has a fixed point.
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3. Main result

Theorem 3.1. Assume the hypotheses (H1), (H2), (H3), (H4), (H5)
and (H6) are satisfied. Then the integral inclusion (1.1) has at least
one solution.

Proof. A solution of (1.1) is a fixed point for the multivalued map
N :C(J,E) — C(J, E) defined by

Ny := {h € C(J,E): h(t) = /K(t,s)fy(s)ds+g(t) 1 fy € SF,y}

where
Spy={fy € L'(J,E) : fy(t) € F(t,y(t)) forae teJ}.

We shall show that IV is a completely continuous multivalued map,
u.s.c. and has convex closed values. The proof will be given in several
steps.

Step 1: Ny is convex for each y € C(J, E). Indeed, if h, h belong
to Ny. Then there exist f,, 7 € Sr,y such that

t
h(t) :/Kt 8)f,(s)ds +g(t), telJ,
0
and
t
E(t):/K(t,s)fy(s)+g(t), teJ
0

Let 0 < k <1, then for £ € J we have that
(kh + (1 — k) /K (& )k Fy(5) + (1= BT, (5))ds + g(t).

Since Sg,y is convex (because F' is convex valued) then
kh+ (1 —k)h € Ny.

‘ Step 2: N sends bounded sets into bounded sets in C(J, E). Let
B, ={y e C(J,E) : ||y|lo < 7} be a bounded set in C(J, E) and y € By,
then for each h € Ny there exists f, € Sry such that
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t
h(t) = /K(t,s)fy(s)cls+g(t), teJ
0
Thus for each ¢ € J we have

h(t)] < / K (2, 9)|1 £, (5)]ds + |g(2)] <

< |lpll 2 sup;e y K (t) supyepo,r ¥ (¥) + supse s 19(2)] < oo

Step 3: N sends bounded sets in C(J, F) into equicontinuous
sets. Let ty, to € J, t; < ta, By = {y € C(J,E) : |lyllo < r} be a
bounded set in C(J,E) and y € B,. Let h € Ny, then there exists
fy € SFy such that

i
/Ktsfy (s)ds+g(t), ted.
0

Thus for each ¢t € J we have that
|M@—M@L-/Km@@@®~/KM@h@m+

+glta) — g(t1)] =

t
= | [Uxtta,s) - KCes, o)y (odas
0
+ [ K,y (eds + glta) - oli0)] <
T
<K (t2,) = Kt llzee [ 1fy(o)lds+
0

+ (supies K(0)) [ 1£y(s)lds +1g(e2) — g(t2)] <
< NE(iz, ) = K (o1, o lpll 1 supyego, $(6)+
+supres K(0(t2 — )l supyeio,n (v) + la(ta) - (el

As a consequence of Step 2, Step 3 and (H6) together with the
Ascoli-Arzela theorem we can conclude that N : C(J, E) — C(J, E) is
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a completely continuous multivalued map, and therefore, a condensing
map.

Step 4: N has a closed graph. Let y, — yo0, hn € Nyn, hp —
— hy. We shall prove that hg € Nyp i.e. there exists vg € Sp,y, such
that

¢
/Ktsvo (s)ds+g(t), ted
0

We have that
H(hn —g) — (ho — g)|lo — 0 as n — oo.

Consider the linear continuous operator I' : L1(J, E) — C(J, E) de-

fined by
¢
:/K(t,s)v(s)ds, ted.
0

Clearly from the definition of I" we have that
(hn —g) € T(SFy,)-

From Lemma 2.1, it follows that I' o Sg, is a closed graph operator.
This, besides to y, — yo and Lemma 2.1, furnishes that

(Ro — g) € T(SF,0),

i.e.
t
/Ktsvo Yds+g(t), teJ,
0

for some vg € Sry,-
It remains now to prove that

M:={yeC(J,E): \y € Ny, A> 1}
is bounded to conclude (by Lemma 2.3) that N has fixed points. For

this, let Ay € Ny for some A > 1. Then there exists f, € SF,y such that

y(t) = /K (t,8)fy(s)ds+ A"1g(t) forall teJ

In view of (H2), (H3), (H4) and (H5) we have for each ¢t € J
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/ (t, 9)lp(s)wly(s))ds + llgllo <

t

< supye K (0) / p(s)(Jy(s) )ds + llgllo-

0

As a consequence of Lemma 2.2, we obtain

lyllo < llzllo,
where z is the unique solution on J of the integral equation

(3.1) 2(6) = llgllo = supees K (0) [ pls)ba(s))ds

So M is bounded. Set X := C(J, E). As a consequence of Lemma 2.3
we can conclude that the multivalued map N has a fixed point y which
is a solution of (1.1). ¢

Remark. Hypothesis (H5) and Lemma 2.2 imply the existence and
the uniqueness of the solution of (3.1).
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