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Abstract: We introduce a new type of canonical forms for certain classes of
linear differential equations with the delayed argument. These special forms
may serve for investigations of asymptotic behaviour of solutions of the stud-
ied equations and enable us to generalize some asymptotic results concerning

these equati‘ons.

1. Introduction

In this paper we are going to discuss some aspects of the trans-
formation theory of functional differential equations. The origin of this
theory goes back to paper [7], where T. Kato and J. B. Mcleod used
the logarithmic substitution to convert equation

E-mail address: cermakh@mat.fme.vntbr.cz
Research supported by the grant # A101/99/02 of the Academy of Sciences
of the Czech Republic.




30 J. Cermdk

y'(z) = py(z) + qy(Az), =z €[0,00)
into an equation with a constant delay. This idea has been generalized
by M. L. Heard [6] and F. Neuman [8], [9]. These authors introduced a
change of the independent variable ¢t = ¢(z) to convert equation

11)  9'(z) =p(a)y(x) + q(x)y(r(z)), = €I=][z0,00)

into an equation with a constant deviation. This problem leads to’
finding a solution ¢(z) € C1(I) of Abel equation

(1.2) p(r(z)) =¢(z) -1, zel
such that ¢'(z) > 0 for every z € I. Moreover, a change of the depen-
dent variable z(z) = exp{ — [ p(s) ds}y(m) introduced in [9] enables

o
us to transform equation (1.1) into an equation with the vanishing co-
efficient of z(z). Summarizing these results we can recall the following
statement.

Theorem 1. Let p(z), ¢(z) € C°(I), 7(z) € C*(I), 7(z) < z= and
7'(z) > 0 for every x € I. Then equation (1.1) can be transformed into

(1.3) At) = r(t)z(t—1), teJ

Proof. The proof was given in [9]. ¢

Equations of type (1.3) have been much studied and therefore
may serve as canonical forms for a wide class of equations (1.1). Con-
sequently, this transformation approach enables us to generalize some
results concerning qualitative properties of solutions of (1.1).

Our aim is to propose alternative canonical forms for a special
class of equations (1.1). We show that these forms can be used with
the success especially in investigations of asymptotic properties of some
equations (1.1). Particularly, we derive asymptotic bounds of solutions
of certain equations (1.1) with an unbounded delay, i.e., with an un-
bounded function r(z) = z — 7(z).

Throughout this paper we shall assume that T(m) € C(I) is an
increasing function such that 7(z) < z for every « € I (i.e., we consider
equations (1.1) with a delayed argument). By the symbol ™ (n € Z)
we understand the n-th iterate of 7 (for n > 0) or the -n-th iterate of
the inverse function 77! (for n < 0) and put 7° =id. Finally, we denote

I_1 = [r(zg), 00).
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2. A change of variables

We start off with the study of Abel equation (1.2).
Proposition 1. Let 7(z) € C™(I) and 7'(z) > 0 for everyz € I. Then
for any initial function po(x) € C™([7(z0), zo]) such that py(z) > 0 for
every x € [1(zo), zo] and -

0§ (1(@o)) = [po(wo) = 1]®), 5=0,1,...,r
there ezists a unique solution (z) € C"™(I_1) of (1.2) such that ¢'(z) >
> 0 for everyx € I_; and

o(z) = po(z)
for every x € [T(zg), zo]. This solution is given by the formula

01 o(z) = po(r"(x)) + 1,
(21) 7" 2y) <z <77"(x0), n=0,1,2,....

Proof. The existence of such a solution ¢(z) can be proved by steps
(cf. [8], Th. 1). ¢

Remark. Assuming that 7(z) € C*(I) is an increasing function such
that 7(z) < z for every z € I we can similarly show the existence of an
increasing solution ¢(z) € C1(I_,) of (1.2).

Proposition 2. In addition to assumptions of Prop. 1 we suppose
that 7'(z) < A < 1 for every z € I. Then a solution ¢(x) € C*(I_1) of
equation (1.2) given by (2.1) satisfies the relation ¢’ o ™ 1(t) = O(AY)
ast — oo.

Proof. Let ¢(z) be a solution of (1.2) given by (2.1) and put ¥(z) =
= A=%(®)_ Then 1)(z) defines a solution of the equation

(2.2) P(r(z)) = M(z), zel.
Differentiating (2.2) we obtain
V@ ="yr@), el

A
hence 9/(z) is bounded. Then we can easily deduce that

# 0w ) = AV () =00 ast oo 0

Now let ¢(z) € C*(I_1) be an increasing solution of (1.2) and de-
note h = ¢~ on J_; = ¢(I_1). Hence, h(t) € C*(J_;) is an increasing
solution of the functional equation
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ht—1) =7(h(t)), teJ=0p().
Then we consider the difference equation

q(h(t))
(2.3) off) =at~1)+h L ps, tel

For

AT o)
24 10 =g [m —p(h(t))} ’

where the symbol In denotes the principal branch of the corresponding
logarithm, it holds

Proposition 3. Let p(z), ¢(z), 7(z) € C*(I), p(x), q(z) # 0 for every
€I, p(z) € CY(I_1) be an increasing solution of (1.2) and let h =

=l on J_1 = p(I_1). Assume that |y(t)| is nonincreasing on J and

[ |v(s)|ds converges. Then there ezists a (possibly complez valued)
o(zo)
solution a(t) € CY(J_1) of (2.3) such that &(t) is bounded.
Proof. The existence of a solution «(t) € C*(J_1) of (2.3) can be
easily proved by steps. We show that &(¢) is bounded. Function c&(t)
is a solution of the equation

a(t)=a(t—1)+~(), teJ
To prove the boundedness of &(t) we denote tg = ¢(z0), t—1 = to — 1,
ti - to + i, Li - [ti——lyti] and Mi = Sup{ld(t)l 1t € Lz}, 1= 0, 1, RPN
Choose any ¢t € L;41. Then
Ga(t) < My + |y(t:);
ie.,
Miyy < Mi+ [y(t)], i=0,1,....

Repeating this we can deduce that

Miy: < Mo+21’>’(tj)|a t=0,1,....
§=0
Letting 7 — oo we can easily verify that the infinite series Z;’io lv(¢5)]
converges by the use of Cauchy integral criterion. This proves the
boundedness of (M;)$2; as i — co0. O
Prop. 1, Prop. 2 and Prop. 3 yield
Theorem 2. Let p(z), q(z), 7(z) € C*(I), p(z), g(z) #0,0 < 7'(z) <
< X < 1 for every x € I. Further, let p(z) € C*(I_1), ¢'(z) > 0 on
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I_y, be a solution of (1.2) given by (2.1) and let h = ¢~ on J_; =

= (I_1). Assume that I'y(t)| is nonincreasing on J and [ |y(s)|ds
¢(zo0)
converges, where y(t) is given by (2.4). Then equation (1.1) can be

transformed into an equation
(2.5) v(t)2(t) = [p(h(t)) — w(t)]2(t) - p(h(t)2(t — 1), tE€ J=(]),

where v(t), w(t) = O (A\*) as t — oco.

Proof. Let a(t) € C1(J_1) be a solution of (2.3) with a bounded deriv-
ative on J_; (see Prop. 3). We introduce a change of variables z(t) =
= exp{—a(t)}y(h(t)). It is easy to verify that equation (1.1) becomes

£(8) = [p(r(£))A(t) — &(t)]2(t) — p(A(E)A()2(t — 1), teEJ.
Put v(t) = + and w(t) = &)  Then the asymptotic relations v(t),

h(t) h(t) "
w(t) = O (A*) as t — oo follow from Prop. 2 with the respect to = (t) =
= ¢' o p7H(t). O

Remark. Due to the relation w(t) = O (A\*) as t = 00, 0 < A < 1, we
“expect that the behaviour at infinity of solutions of equation (2.5) may
be close to the behaviour of solutions of the equation

(2.6) 2(t) = B(B)[=(t) —2(t - 1)], teJ

Equation (2.6) has been subject of numerous investigations (for results,
methods and references see, e.g., F. V. Atkinson and J. R. Haddock
[1], J. Diblik [4], [5], S. N. Zhang [10] and others). Consequently, we
can extend some results and proof techniques concerning equation (2.6)
also to equation (2.5) and thus obtain new asymptotic results for equa-
tion (1.1).

3. Applications

To demonstrate this transformation approach we consider equa-
tion (1.1) with qz(]?)) = K # 0 for every ¢ € I. Then the difference
equation (2.3) has the simple form, namely

| at)=at-1)+InK, teJ
and admits the function a(t) = (In K)t as the required solution.

First we state
Proposition 4. Let 7(z) € C?(I) be such that 7""(z) < 0 for every
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z € I. Then for any initial function po(z) € C*([7(x0), Zo]) such that
©h(z) <0 for every z € [T(z0), To] and

08 (1 (x0)) = [o(mo) = ), 5=0,1,2

there exists a unique solution p(z) € C?(I_1) of (1.2) such that ¢"(z) <
<0 for everyxz € I_1 and

() = po(z)

for every x € [T(xo), zo). This solution is given by (2.1).
Proof. The proof is obvious. ¢

Then we have
Theorem 3. Consider equation (1.1), where p(z), g(z) € C'(I),
m(z) € C?*(I), p(z) < 0 and p(z) is nonincreasing on I, g(z) # O,
:qé—% =K#0and0<7(z) <A<1,7"(z) <0 for everyz € I. If
o(z) € C*(I), ¢'(z) > 0, ¢'(z) <0 on I, is a solution of (1.2) given
by (2.1), then

(3.1) y(z) = O (exp{(In|K|)p(2)}) asz — oo,

for every solution y(z) of (1.1).
Proof. We put o* := InK, af := Rea* = In|K| and let h =
= ¢ ' on J_; = p(I_;). We introduce the transformation z(t) =

= exp {—a*t}y(h(t)) in (1.1) to obtain equation (2.5), where v(t) = h_(ltf

and w(t) = -2-. This equation can be rewritten as

T R()”
h(t)
Ay "t — / () du b | =
3 |7 exp Lo p(u)du p | =
zo
h(2)
= —p(R(E))h(t) exp { a7t — / p)du b 2(t — 1),

Let to > p(zo) be such that o*, — p(h(t))A(t) > 0 for all t > to. Put
t1=tg—1,t; =tg+1, L; = [ti—17ti] and M; = sup {!Z(t)] t e Li},
i=0,1,.... Let t € L;;;. Then integrating the last relation over [¢;, ]
we obtain
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h(t) h(t)
z(t)=exp ¢ a*(t;—1t)+ /p(u)du z(t;)+exp /p(u)du—a*t X
h(t;) Zo
¢ h(s)
x/ —p(h(s))h(s) exp a*s——/p(u)du z(s—1) | ds.
t; To

Now z(t) can be estimated as

(3.2)

( h(t)

201 < Mi exp{ aplti=9)+ [ pwdug+

L h(ti)

[ h(t)
+ M; exp /p(u) du — ajt p X
\mo
¢ h(s)
x/ —p(h(s))h(s)exp { os — /p(u) du ds.

t; Zo

Further, we have

t / h(s)

/ —p(h(s))h(s) exp { Qs — / p(u) du ds <
t; Zo

r ( h(s) t
< |exp{ ays — / p(u) du +

i L o ti

t h(s)

+ o?;f/ exp{ ars — / p(u)du p | ds,

t; \ Zo

where af =max (—a¥,0). The integration by parts enables us to esti-
mate the last term as
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¢ h(s)
of;‘/ exp{ ars — /p(u)du ds <
t; Zo
A(s) ) _ i
< . / () du b or
< |lexp afs— [ p(u)du . -
ay — p(h(s))h(s)
Zo J t;
ht) ] _ \
ex t /p(u)du or =
—exp} art — : =
J oz~ p(AGDAG) ),
h(s) i _
= |exp afs— [ p(u)du .
oy — p(h(ti))h(t:)
g

t;

by use of Prop. 4. Substituting this back into (3.2) we get
d,'*
|z(t)] < M; (1 + L ) , t€ L.
ar — p(h(ti))h(t:)

Since t € L;4; was arbitrary, we have

M < M (14 o —p(hfm)h(ti)) =

Moy A o . , 1=0,1,....
: Q(Ha:—pm»h(tj)) e

Using Prop. 2 and the assumptions p(z) < 0 and p(z) is nonincreas-
ing on I we get that this product converges as i — oo, hence z(t) is
bounded. The statement is proved. ¢

Estimate (3.1) yields the upper bound of all solutions of equation
(1.1). The result of the following statement can be viewed as the lower
bound of all nontrivial solutions of (1.1).
Theorem 4. Consider equation (1.1), where p(z), q(z), T(z) € C*(I),

p(z), q(z) # 0, _qIS"("z)) =K #0and 7'(z) >0 for allz € I. Let p(z) €
€ C®(I_1), ¢'(z) > 0 on I_1, be a solution of (1.2) given by (2.1),
h=¢ ! onJ_i=p(l_1) and assume that there exist constants L > 0,

p > 1 such that
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(Sam)

Then no solution y(z) of (1.1) except the trivial one satisfies
y(z) = o(exp {(In|K|)p(2)}) asz — oo.

Proof. Substituting 2(t) = exp {—a*t}y(h(t)), where o* = In K, in

(1.1) we get equation (2.5) with v(t) = h—(15 and w(t) = f‘é Put
r(t) =

v(t) 1

— -p(h()  —p(h(t)A(t)

and s(t) =1 — a*r(t). Then equation (2.5) becomes
(3.3) r(t)2(t) = —s(t)z(t) + 2(t = 1), > ¢(zo).

This equation was deeply discussed by N. G. de Bruijn in [2]. The
author proved, among others, that equation (3.3) has no nontrivial
solution z(t) tending to zero provided

Lm+1mm

Lm+1mm

< tzto=l), m=0,1,....

Lm+1 m
()] < (s(8) = ™| < ==
for suitable constants L > 0, p > land allt > tg = p(z0), m=0,1,....
Our statement follows immediately from this result. ¢

Remark. Asymptotic relations v(t), w(t) = O (X*) as t — o0, 0 <

< XA < 1, imposed on coefficients of canonical equation (2.5) can be
: oo

often weakened to v(t), w(t) = O(g(t)) as t — oo, where [ |g(s)|ds
converges. Thus we can extend class of equations (1.1) that can be
converted into its canonical form (2.5) (for a similar situation see [6]

tm+p ? tm+p

and [3]).
Example 1. Consider the equation
(3.4) y'(z) =pary(z) +qry(z), z€[1,00),

where p < 0, ¢ # 0, 0 < XA < 1 are real constants. Abel equation (1.2)
becomes
pe(Az) =p(z) -1, z€]l,00),

and admits p(z) = hzr;“";'l as the solution with the required properties.

Equation (2.3) has the form

with the solution a(t) = (]11 _ip) t. Th. 3 and Th. 4 then imply that
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y(z) =0 (z¥), w=-—2 asz 00

for every solution y(z) of (3.4) and, moreover, only the trivial solution
y(z) of (3.4) satisfies

lal
In —P
In A1
Example 2. We investigate the asymptotic behaviour of the equation

(3.5) ¥ (z) = py(z) +qy(z”), «€[2,00),

where p < 0, ¢ # 0, 0 < v < 1 are real constants. Substituting 7(z) =
= z7 into (1.2) we obtain Abel equation in the form

o(z7) = p(z) — 1.
This equation has the function ¢(z) = 111‘;,1),—“_”{ as the required solu-
tion. Further, equation (2.3) obviously admits the same solution as in

y(z) =o0(z¥), w= as £ — 00.

Example 1, namely a(t) = (ln jqz;) t. Then we can deduce from our

asymptotic results that
In 14

y(z) = O ((Inz)*), w:mfy*_pl as T — 00

for every solution y(z) of (3.5). Moreover, no solution y(z) of (3.5)
except the trivial one satisfies

lal

y(z) =o((Inz)“), w:]n'y_“pl as & — oo.

We note that these results coincide with the asymptotic formula derived
in [6] for certain equations (1.1) with constant coefficients.
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