Mathematica Pannonica
10/1 (1999), 103-110

MEASURABLE SOLUTIONS OF
FUNCTIONAL EQUATIONS
SATISFIED ALMOST EVERYWHERE

Antal Jarai

Department of Numerical Analysis, Edtvés L. University, H-1518
Budapest, Pf. 32, Hungary

Dedicated to Professor Ferenc Schipp on his 60th birthday

Received: October 1998
MSC 1991: 39 B 05, 39 B 22, 28 A 20
Keywords: Functional equations, measurable solutions.

Abstract: In this paper under certain conditions it is proved that if the
functional equation

H(z,y, fi(Gi(2,9)) .. , fa(Gn(z,9))) =0
with measurable unknown functions fi;..., fn is satisfied for almost all pair
(z,y) from an open set F then there exist (unique) continuous functions f;
such that f; = ccf; almost everywhere for 4 = 1,... ,n and replacing f; by f;
for i = 1,...,n the above equation is satisfied everywhere on E.

In 1960 P. Erdés raised the following problem: Suppose that a
function f : R — R satisfies the relation

flz+y) = f(z) + f(y)
for almost all (z,y) € R? in the sence of the planar Lebesgue measure.
Does there exists an additive function g : R — R such that f(z) =
= g(z) almost everywhere in the sence of the linear Lebesgue measure?
A positive answer was given to this question by N. G. de Bruijn, and

independently, by W. B. Jurkat. For further references, see the book [9]
of Kuczma, pp. 443-447.
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Here we deal with a related question. Suppose that the more general
functional equation

(1) H(z,y, (G(z,9)), i(G1(%,)); - , fa(Gnlz,1))) = 0

with unknown measurable functions f, fi, fa,..., fn is satisfied for all
(z,y) from a subset E' of some open subset E of R" x R¥, for which
E \ E' has Lebesgue measure zero in R" x R*. Here all functions are
supposed to be defined on some open subset of some Euclidean space,
and taking values in some Euclidean space. The known functions H and
G, Gy, ... ,G, supposed to be smooth. Is it possible to find functions
such that f = f and f; = f; almost everywhere for 7 = 1,...,n such
that replacing f, f1,..., fn with f, f1,..., fa, respectively, the functional
equation (1) is satisfied everywhere on E?

We shall prove that under reasonable conditions the answer is yes
and the functions f, f;, ¢ = 1,...,n are continuous. Of course, this
is related to earlier results in Jérai [4], [5], [6] proving that measurable
solutions of a functional equation satisfied everywhere on an open set are
continuous.

Under certain condition equation (1) can be reduced to a simpler
explicit equation. Namely, suppose, that the term f(G(z,y)) can be ex-
pressed from equation (1), and it is posssible to introduce a new variable
t = G(z,y) instead of = to obtain the functional equation

@) F@O) =hy, ila(ty), - faloa(ty), (By) €D

Here D' is the image of E’ by the mapping (z,y) — (G(z,y),y). We
suppose that this mapping is a diffeomorphism mapping the open set E
onto the open set D, hence this mapping and its inverse carry sets having
Lebesgue measure zero into sets having Lebesgue measure zero. Now, if
we are able to prove that there is subset 7" of the domain T of f such
that T\ 7" has measure zero and f|T" can be (uniquelly) extended to
a continuous function f defined on T, then the functional equation (2)
is satisfied with f instead of f almost everywhere on D, namely, on the
set Dy = D' N (T' x R¥). This means that if we replace f by f then
equation (1) is still satisfied, at least on some subset Ej of Eqy for which
E'\ E} has measure zero. Now, repeating this process with f;, we may
obtain a subset B! of E} and a function f; continuous and equal almost
everywhere to f; such that (1) is satisfied if f and f; are replaced by f
and fi, respectively. Finally, we obtain a subset B = E; such that E\ E"
has measure zero and (1) is still satisfied if we replace f, f1,..., f. by
the continuous function f, fi, ..., f. equal almost everywhere to them.
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Since the left hand side of (1) is continuous on E and equal to zero on
a dense subset E” C E, we obtain that equation (1) is satisfied on F if
[y fi,. .., fn are replaced by f, fi,..., s respectively.

Summarising, our problem concerning equation (1) can be reduced
to the following problem: Suppose that equation (2) is satisfied on a
subset D' of the open set D for which D \ D' has measure zero. Give
reasonable conditions under which there is an appropriate subset 7" of
the domain T' of f such that 7'\ 7" has measure zero and the function
f|T" has a (unique) continuous extension f to 7. We shall see that the
set 1" can be choosen to be the set of all points ¢ € T’ for which the set
{y: (t,y) € D\ D'} has measure zero. By Fubini’s theorem, 7'\ T" has
measure zero. More generally, f is determined by any subset of this 7"
which is still dense in T". This will be proved in a much more general
setting in Th. 2. The proof use Th. 1, which is a refinement of a part of
Th. 2.6 in Jdrai [7]. For the sake completeness, we shall give the proof
of Th. 1, too. The case of Euclidean spaces will be obtained in Th. 3 as
a consequence of Th. 2.

We shall denote by R the set of real numbers. The norm on R*
is denoted by | |. If f is a function, dom f denote the domain of f. If
D C X; x X3 x...%x X, we shall use the partial sets '

Doy = {(%1, .-+ s Zic1, Tir1y -, Tn) : (T1, 00y Tn) € D}.
The partial functions f,, : D,, — Y are defined by
fzi(fl,'l, cee 3 L1y g1y - - ,.’L‘n) = f(LEl., PN 7$n)
whenever (z1,...,z,) € D. Also Dy,,....a;, and Joi) s, are defined

similarly. Now, if X; and ¥ are normed spaces and Dg,.... 211 t1peyTn 1S

an open subset of X; we define the partial derivative denoted by as

the derivative of fo, . 2. 41, 2. (if it exists). '

We shall use the terminology and notations of Bourbaki [2] con-
cerning topology. Hence, every regular space is supposed to be Hausdorff.
Note that the limit of a function at a point is defined by Bourbaki without
excluding this point.

Concerning measure theory, we follow the terminology of Federer
[3]. Hence a measure means a countably subadditive extended real valued
nonnegative function p defined on all subsets of a set; this is called outer
measure in other terminology. The set of measurable sets is defined by
the Charatheodory condition: a set A C X is called p measurable if
(T NA)+ pu(T\ A) = p(T) for every T C X. The measure y is called
finite if pu(X) < oco; it is called o-finite, if X can be represented as
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the countable union of measurable sets having finite y measure. A™ will
denote the Lebesgue measure on R™. Let p be a measure on X and Y
a topological space. A function is called u measurable on a set A if its
domain contains almost all of A, its range is in the topological space Y,
and if AN f71(V) is u measurable whenever V is an open subset of Y.
In particular A have to be measurable.

QOur terminology concerning topological measures is a somewhat
different from the terminology of Federer’s book. By a Radon measure
we mean a measure y defined on a Hausdorff space X, with the following
properties:

(1) the p measure of any compact subset K of X is finite;

(2) every open subset V is measurable and

w(V) = sup{u(K) : K CV, K compact};
(3) if A is any subset of X, then
w(A) =inf{u(V): ACV, V open}.
It is not hard to prove that if p is a Radon measure then
pw(A) =sup{u(K): K C A, K compact}

whenever A is a p measurable set with finite x4 measure.

Let u be a Radon measure on the Hausdorff space X and let Y be
a topological space. Let f be a function mapping almost all of a subset
E of X into Y. The function f is called a Lusin u measurable function
on FE, if for each measurable subset A of E having finite measure and for
each £ > 0 there is a compact subset C of A such that u(A\ C) < € and
f|C is continuous. In this setting Lusin’s theorem reads as follows:
Lusin’s Theorem. Let u be a Radon measure on the Hausdorff space
X, let E be a u measurable subset of X and let Y be a topological space.
A function f mapping a subset of X into Y which is Lusin pu measurable
on E, is u measurable on E. Conversely, if f is p measurable on E and
the topology of Y has a countable base, then f is Lusin p measurable
on E.
Proof. See Oxtoby [9], 8.2.0
Theorem 1. Let T be a topological space, X and Y Hausdor[f spaces
with Radon measures p and v, respectively. Suppose that v is o-finite
and g : T XY — X is a continuous function with the following property:

(1) for each € > 0 there exists a 6 > 0 such that ift € T, BCY,

v(B) > € then u(g:(B)) > 4.

Suppose, moreover, that to € T and f is a Lusin v measurable function
with values in a topological space Y on some measurable set D contain-
ing g1,(Y). Then for every sequence t,, from T convergent to ty has a
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subsequence tm, such that f(g(tm,,y)) = F(g(to,y)) for almost ally € Y
as k — oo.
Proof. Let us observe that whenever K’ is a compact subset of X and
C' = g4, *(K') has finite v measure, then for each € > 0 there exists a
neighbourhood Ty of ¢y such that for each ¢ € T we have v(C"\g; }(K")) <
< &. To prove this, let us choose a compact subset C" of the Borel set '
for which v(C"\ C") < /2 and let K" = g,,(C"). Let us choose an open
set V' containing K" such that u(V \ K”) < §, where & corresponds to
£/2 by (1). For each y € C" there exist open neighbourhoods ¥, and T,
of y and %y, respectively, such that g(T, xY¥,) C V. Let us choose a ﬁnlte
subcovering Yy,, ... ,Y,, of the coverlng Yy,y € C" andlet Tp = N2, Ty,
Then for t € Tg the set C’”\g '(K") is mapped by g, into V' \ K", hence
has v measure less then €/2. Now, since K" C K’ and
C'\ g '(K') C (C"\C")U(C"\ g7 1 (K™))

we obtain that v(C'\ g; '(K")) < ¢

First we shall prove the statement for a compact subset C of ¥
instead of Y. So let C' be a compact subset of YV and K = g;,(C),
moreover let £, — ¢y be a sequence in T. Let £; = 2% and let §; > 0 be
the corresponding sequence of numbers § by (1). Let us choose a compact
subset K7 C K such that f|K; is continuous and u(K \ K;) < &, and
let C; = 9o "(K1). Then v(C\ Ci) < &. By induction, using what
we proved in the previous paragraph, we may find a sequence of indices
my < my < ... such that I/(Cl \gt_l(Kl)) < €;+1 whenever j > m;.
This implies that v(Cy \ N2,g;." (Kl)) < e1. Now let K3 be a compact
subset of K such that f|Kj; is also continuous and u(K \ K3) < 8. Let
Cy = gi;'(K3), then v(C \ C3) < €. Let us apply induction again, but
using the new subsequence instead of the original sequence. Then we
obtain a subsequence such that v(C; \ I’“Is_lgtmlr (K3)) < €2. Continuing
this process and taking the diagonal sequence, we arrive at a subsequence
tm, Of iy such that the measure of the set

= (C\ C) U ((U2:(Ci\ ;... (K2))))
is less then 2¢;. Now let B = N2, U2, F;. Clearly, v(F) = 0. Ify € C\E
then there exists a k such that y ¢ E; for 4 > k. This means on one hand
that y ¢ C \ C; for ¢ > k, that is, y € C; for i > k. This implies that
g1, (y) € K; for i > k, in partlcular 9t,(y) € Ki. On the other hand, if
i > k then for each p > i we have y ¢ C; \ gtmp (K;). We shall apply
this only for ¢ = & to obtain that g, (y) € K whenever p > k. Because
f|Kp is continuous, we obtain that f (9tm, () = f(94(y)). The general
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case can be obtained representing Y as the union of a o-compact set and
a set of measure zero and using the diagonal process. ¢
Theorem 2. Let T and Z; (i = 1,2,...,n) be topological spaces, Z,
Y and X; (i =1,2,...,n) Hausdorff spaces. Suppose that D CT xY,
T"cT, X/ CcX;. Lete f:T"—>Z,9,:D — X, i =1,2,...,n),
fi: Xl = Z, i =1,2,...,n) and h : DX Zy X ...x Z, — Z be
functions, v a Radon measure on Y, p; o Radon measure on X; and
wi(Xi\X])=0(=1,2,...,n). Suppose that ty € T has countable base
of neighbourhoods and the following conditions are satisfied:

(1) for each fized y in'Y, the function h is continuous in the other
variables;

(2) f; is Lusin p; measurable on the measurable subset A; of X;
(t=1,2,...,n); ‘

(3) ¢; is continuous on D (i=1,2,...,n);

(4) there exist sets V and K such that V is open, K is compact,
VxKCD,toeV,v(K)>0and K C N9, (Ai);

(5) for each € > 0 there exists a § > 0 such that B C K and
v(B) > € 1mplies p; (git(B)) > 6 whenever 1 <i<n andt €V,

(6) there exist a subset V' of TNV such that ty is contained in the
closure of V' and for each t € V' for almost all y € K we have

f(t) = h’(t’ya fl(gl(t7 y))7 e 7fn(gn(t7 y)))

Then limyeyr 4, f(t) exists.

Proof. Let t,, be a sequence in V' convergent to 3. Applying Th. 1
for g defined by g(t,y) = ¢1(¢,y) whenever (¢,y) € V x K and for the
restriction of the measure v to the subsets of K we obtain a subsequence
tm, for which fi(gi(tm,,v)) — fi(g1(to,y)) for almost all y € K. Now
repeting this with f;, g» and the subsequence %, , we obtain a sub-
-subsequence, etc. Finally, we obtain a subsequence t,, of the original
sequence t,, such that for almost all y € K we have fi(g:i(tm,y)) —
— fi(gi(to,y)) for 1 < ¢ < n. Fixing any such y € K, by the functional
equation and the properties of h this means that each sequence %, — %
in T has a subsequence %, for which f(¢;,) converges. Of course, its
limit zy € Z does not depend on y. Hence, for all y from a set K' C K
for which v(K \ K') = 0 we have

(7) 2y = h‘(t07y7 fl(gl(tO,y))a e afn(gn(tm y)))

Suppose that it is not true that limieyr 4 ye, f(2) = 20. Then there exists
a neighbourhood W of z; such that there is no neighbourhood U of %,
for which the set U NV’ is mapped by f into W. If U, m = 1,2,...
is a countable neighbourhood base of ¢y, then let us choose a sequence



Measurable solutions of functional equations 109

tr € Un NV’ for which f(¢,,) ¢ W. Repeating the above process with
tr, instead of ¢,,, we obtain a subsequence t;nj such that for almost all
y € K we have f;(gi(tr,,,v)) — fi(9:(to,y)). Now, if we choose an y € K’
for which the above sequences converge for i = 1,2,...,n, then using
the functional equation and (7) we obtain a contradiction. ¢
To prove the next theorem we need a lemma.

Lemma 1. Let Y be an open subset of R¥, T a topological space, D
an open subset of T XY and (to,yo) € D. Suppose, that the function
g: D —= R s continuous and continuously differentiable with respect to

0
y. If the rank of the matriz 5—3(750, Yo) is T then there exist neighbourhoods

T* and Y™ of ty and yo, respectively for which

(1) for each € > O there ezists § > 0 such that A" (g;(B)) > 6
whenever t € T*, B C Y* A\(B) > ¢;

(2) if A is a A" measurable subset of R then g7 (A) NY* is a AF
-~ measurable subset of Y for each t € T*.
Proof. This is Lemma 3.2 in Jérai [6]. ¢
Theorem 3. Let Z be a regular space, Z; (i = 1,2,...,n) topological
spaces and T' a first countable topological space. Let Y be an open subset
of R¥, X; an open subset of R (i = 1,2,...,n) and D an open subset
of T xY. Let T' C T be a dense subset, f : T' — Z, ¢ : D — X;
and h : D x Zy X Z1 X ... X Z, — Z. Suppose that the function f; is
almost everywhere defined on X; with values in Z; (i =1,2,...,n) and
the following conditions are satisfied:

(1) for allt € T' for almost all y € D,

@) =hty, filg(t,9), - 5 Fulgn(t9)));

(2) for each fized y in'Y, the function h is continuous in the other

variables;
(3) fi is A" measurable (i = 1,2,... ,n);

(4) g; and the partial derivative 8—91 is continuous on D (i =
Y

=1,2,...,n);
(5) for each t € T' there emists a y such that (t,y) € D and the

0g; :
partial derivative —-ai has rank r; at (t,y) € D (i=1,2,...,n).

Then f has a unique continuous extension to T.
Proof. We shall reduce this theorem to the previous theorem. We shall
prove that the limit limyeqr sy, f(£) exist for each ¢ € T. If this is
proved, then defining the extension of f to T' by this limit, the theorem
is proved.
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Let us choose for a given ty a yo such that (¢, o) € D and the
partial derivative % has rank r; at (to, %) (! = 1,2,...,n). To prove
that the limit exists?we will replace D by a suitable smaller set D*. By
the previous lemma there exist open neighbourhoods V and W of ¢y, and
Yo, respectively, with the following properties:

(6) For each € > 0 there exists a 6 > 0 such that A" (g;+(B)) > ¢
whenever 1 <i<n,t€V, BCW and \¥(B) > ¢;

(7) gi;(dom f;) N W is a AF measurable subset of Rf whenever
1<i<nandteV;

(8) W is a compact set, V x W C D and

\E ( ﬁ gi:t%) (dom f;) N W) > 0.
i=1

Let D* =V x W, h* = h|D* X Z; X ... X Zy, gf = g|D* (i =
= 1,2,...,n), and let us apply the previous theorem on the set D*
instead of D. ¢ '
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