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" Abstract: We obtain estimates of Hardy—-Lorentz norms of a large class of
summability methods for double Vilenkin-Fourier series which are valid for
Vilenkin systems of both bounded and unbounded type. For the bounded case,
these estimates contain a recent result of F. Weisz. For the unbounded case,
they show that pointwise estimates are not, in general, sensitive to the order
of growth of the parameters used to define the Vilenkin system. This is quite
different from the uniform case.

Let N represent the set of natural numbers, and Q := [0,1) x
x[0,1) represent the unit cube. Let pg,pi,po,... and qo,q1,¢s,... be
two sequences of natural numbers with p, > 2 and ¢, > 2. For each
n € Nset P, = pop1...pn—1 and Qp = qog1 ... ¢n_1, Where the empty
product is by definition 1. The double Vilenkin system associated with
these parameters is the system (wn m; 1, m € N) defined on Q as follows:

QTINETE \ T 2TIMEYk
Wnm(Z, ) := wp(z He ( ) Hexp (T :
k=0

where the coefficients ng, mg, zg, yx all are integers which satisfy 0 <
S <Py 0 <y < g, 0 < 2 < pi, 0 < g < gy @ = oM Pr,
M= oo MeQr, T = pey kakjrll, andy =) 1o, ka,;il (see Vilenkin
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[5] for more details). When p; = g, = 2 for all k, the system wy,m is the
double Walsh system. When p; = O(1) and gz = O(1), the system wpm
is called a double Vilenkin system of bounded type.

Let

7k, g) = / / I 3wns(o,) do,)

represent the double Vilenkin—Fourier coefficients of an f € L;(Q). The
double Vilenkin—Fourier series of f is the series whose partial sums are
given by

n—1m—1
Snmf =3 > F(k,j)ws,;
k=0 j=0
and the Cesdro means of the double Vilenkin—Fourier series of f are

given by
B (1) (-4
Onmlf = 1-—— 1—= ) J )Wk j-
/ ; 12:5 n m /

Cesaro summability of Vilenkin—Fourier series for systems of bound-
ed type is fairly well understood. Building on earlier work of Schipp, Pal
and Simon [3] proved for the one-dimensional case that if f € L'[0,1)
then o, f — f almost everywhere on [0, 1). For the two—dimensional case,
Méricz, Schipp, and Wade [1] proved that if f € L'(Q) and p, = ¢, =2
for all n € N, then op, g,.f — f almost everywhere on Q, provided
|n — m| < a for some o > 0; Weisz [6] extended this result to bounded
Vilenkin systems and also proved in this case that o, ,f — f almost
everywhere on Q, provided a~! < n/m < « for some a > 0. None of
these results extend to unbounded Vilenkin systems.

Weisz [6] proved much more than was stated in the previous para-
graph. He actually obtained estimates for the Hardy-Lorentz norms of
the Cesaro means of double Vilenkin—Fourier series in the bounded case.
We shall generalize one of these estimates to a class of summability meth-
ods whose kernels are of the following type:

, n—1p;i—1p;j—1 .
(1) Fo(z) =) Y C(, k,n)w(j, k, £) Dp,(z + £P;}).
§=0 k=0 £=0
Notice that this includes both summability methods Sp,_ f and op, f be-

cause if
1 j=k=0=0

0 otherwise,

C(j,k,n)#w(j,k,e)z{

then F,, is the Vilenkin—Dirichlet kernel
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Pp—1
= Z W,
and if k=0
- kP; : o \—tk
(2) C(J kyn) = ——- and  w(j,k,£) = exp(2mi/p;)

'Pifn

then F;, is the Vilenkin—Fejér kernel

Pp—1 L
Kpn = Z (1-E> Wy,

k=0
(see P4l and Simon [3]).

To state our main theorem, for each pair 0 < p, g < oo, let H, ,(Q)
represent the Vilenkin Hardy-Lorentz spaces introduced by Weisz [6]
using Vilenkin martingales and quadratic variation instead of distribu-
tions and maximal operators. (These spaces reduce to the usual Vilenkin

Hardy spaces H,(Q) when p = ¢.) Also let Y and = represent addition
and subtraction (respectively) which is inherited from the underlying
Vilenkin group, e.g., if z = > 0> 2k Pp, +11, and y = Y oo ye P 4_11, then
T+ Y= ook ® yk) P, +11, where @ denotes addition modulo py—see
Vilenkin [5] for details.

We shall prove the following result.

Theorem 1. Leta > 0,0< 46 <1, 7> 1, F, be a kernel of type (1)
and

3)  (Famf)(z,9) = /O /O Ftu)Fule = ) Fon(y ) dt du.

Suppose B(n, m,r) are positive numbers which satisfy

7

PrQr ! le|C]kn|P ’
PGy 2o 7 (Zﬁnmr nm) - o()

j=0

(4)

and Ke—r—1 gj—1 g
PKQK |C]akm!Qm
PrOns > g (Z B(n,m.1)Q 1|F li] =0Q), |

uniformly in n and m, as K — oo. If the w(j, k,€)’s are bounded and

(5) [En]l1 | Fmlls = O(B(n, m, 7))
as n, m — 0o, then

7=0

F;(f) = sup I nm(f)l

jm—n|<a /B(n m T)

is of weak type (1,1) and for every § <p <1 and 0 < g < oo there is a
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constant Cp , which depends only on p and g such that

”-7:;f“p,q < Op,q“f”Hp,q(Q)-

Proof. We begin the proof with additional notation and terminology. A
Vilenkin rectangle of order n, m is a rectangle of the form R := [kP; !, (k+
+1)P7Y) x [6QE, (0 +1)Q;,!), where k and £ are integers which satisfy
0<k< P, 0<£< @n The o— algebra generated by all Vilenkin
rectangles of order n,m will be denoted by A, .. Given a rectangle
R € A,m and 7 € N, the r—fold ezpansion of R will be the Vilenkin
rectangle R" € A,_, _r which satisfies R C R". A Vilenkin martingale
is a sequence of integrable functions (fnm;n,m € N) such that each
fnm is Anm measurable, and the conditional expectation operator with
respect to these o—algebras satisfies Fy o(frm) = fie for & < n and
£ < m. It is well-known that the partial sums Sp, g, f of the double
Vilenkin—Fourier series of any f € L;(Q) is a Vilenkin martingale.

Let 0 < p < 0o0. A p—atom on Q is a bounded measurable function
a on Q which satisfies

i) a is of mean zero, i.e.,

i ol )z 9) =0

ii) there is a Vilenkin rectangle R € Ag x such that ||a||e < |R|7/7,
iii) a is supported on R.
The only thing we need to know about Hardy-Lorentz spaces is the
following extrapolation theorem (see Weisz [6], Th. 2):
Lemma. Suppose T is a sublinear operator defined on Vilenkin martin-
gales and 0 < 6 < 1. If for every 0 < p < 1 there exists an r € N and a
constant Cpr, which depends only on p and r such that

/ / TP d(z,y) < C,,
QR

holds for all p—atoms a, and if T is bounded from Lo, (Q) to Lo (Q), then
T is of weak type (1,1) on L1(Q) and for each § <p<1,0< ¢ < 0
there is a constant Cp 4 which depends only on p and q such that

||Tpr,q S CP:qu“Hp.q(Q)'

We are now prepared to prove the theorem. Let r be the integer which
satisfies r — 1 < a < 7. By hypothesis (5), F2 is of type (oo, 00). Hence
by Weisz’s Lemma, it suffices to show F is p—quasilocal forall § < p <1,
i.e., for each such p there is a constant C,, such that if a is a p-atom
supported on some “square” R :=1 x J, then
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©) /] . (Foe e < .

Since R is a square, choose K € N such that |I| = Pg! and |J| = Q. If
n < K and m < K, then both w,, and w,, are constant on I and J. Since
a is of mean zero, it follows that a(n, m) = 0. Thus we may suppose that
either n or m is > K. If n > K, then the conditions |n — m| < « and
r—1<a<rimplym>n—a>n—r > K —r. Hence we may assume
that both m and n are > K — r.

To prove (6), notice first that Q \ R" can be broken into 8 pieces:
two horizontal pieces ([0,1)\I") x J"; two vertical pieces I" x ([0,1)\ J");
and four rectangular pieces ([0,1)\1") % ([0,1)\J"). Estimates of F* over
the horizontal and vertical pieces are similar, and the estimates over the

remaining rectangular pieces are simpler. Consequently, we shall supply
the details for the horizontal estimates only.

Fix (z,y) € ([0,1)\ I") x J". Since a is supported on R =1 x J
and |a| < |R| 1/p it follows from (3) that

|(Fuma)( ,y|<//latu|1F )| Fnly ~ )| dbdu <

< IR Fnlls / Fo(z = 1)) dt.

Using (1) and the fact that the w(j, k, £)’s are bounded, we can continue
this estimate as follows.

|(Frma)(z,y)| <

n— 1pj_1p]_1

< CIRI )| Fnln S8 37 (¢ Ko |/|DP,1 CR) S IPA

j=0 k=0 £=0

(Here, and elsewhere, C' denotes an absolute constant which may change
from line to line.)

Recall that P 0< P
n frx< L

(7) Dp, (z) = Fuxjo,pryy (@) = {0 Frise Z 1.

Since z ¢ I" and Dp, is supported on [0, P;), it follows that if n >

> j > K —r then both Dp_(z z t) and Dp, (z -T—EP]]_II z t) are identically
710 for t € I and 0 < £ < p; (because under these conditions, z and

z + OP; +11 both lie outside I” so the coefficients of ¢ cannot cancel all

“lower order” the coefficients of z or z + LP 21)- Thus
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I(Fn,ma)(xvy)l < CIRI_U‘D”FMHI :
(8) K—r—1pj—1lp;j—1

: z ZZ]g(j,kn|/Dpnm+é ]+1. t) dt.

§=0 k=0 £=0
Since Lebesgue measure is translation invariant with respect to +, we
may suppose that I = [0, Pg'). Since n > K —r, and Dp, = Pixp,p1
for all 4 € N, we have both iDpn < %DPK_T and

B
/DP x+£ .7+1 )dt P X[EJe’EJl-l_P )(E)

for j <i < K —1andz ¢ I", where & := (p; — £)P; ;3. Combining
these observations with (8), we obtain
|(Fnma) (2, 9)| < CIRI™P[| Bl -

K—p— lp]_lp]_l P PK Pr_r
Z Z Z 1€(7, Px_, Px [Ege’fje+PEL)(m)'

j=0 €=0 k=0
Cancelling the Pg_,’s and using the inequality (a + b)? < a? + bP (valid
for all a,b > 0 and 0 < p < 1), it follows that

|(Fnma) (2, 9)I” < CPIR| | Fnllf

K—r—1p;j—1 /pj—1 p
Z Z (Z IC Js ks n ) X{Eje,EjH-PEi,)(x)

j=0 £¢=0
for all z € [0,1) \ I". Since |R| = Px'Q%', we arrive at the penultimate
estimate

l (Frma)(z,y)|°

< CPPgQi||Frnllf -

B(n,m, )
(9) K—r—1 1 1
5> ”z'“”“”'P Neisret ()
par i n m,T PK [éje,850+Pr= )

for all z € [0,1) \ I". Since |J7| = QK_T and |[§je, &0 + Pgl,)| = Pgl,
for each j and ¢, we conclude that

/ (Fza) (@, 9) dy do < C7 sup —LKDx_ .
0O\ ST mnKPK T‘QK —r

P
(% 1!<y,kan
DIEAPI e A
j=0

which is bounded by hypothesis (4) since p > 6 0
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By choosing different (’s, w’s, and §’s, we can use this theorem to
generate many results about a variety of summability methods including
(C, @) methods and methods involving subsequences of partial sums of
Sf. To demonstrate how this can be done, to verify that the hypotheses
of the theorem are not vacuous, and to illustrate that the theorem con-
tains new information even in the Cesaro case, we shall prove two results
about the Cesaro means op, q,, f. The first result is Th. 4ii) in Weisz [6).
Corollary 1. Let & > 0 and 0 < § < 1. Suppose the double Vilenkin
system is of bounded type, i.e., p, = O(1) and g, = O(1) as n,m — co.
Hhen ouf = s |or,0.(f)

[m—n|<a

is of weak type (1,1) and for every 6 <p <1 and 0 < g < oo there is a
constant C, , which depends only on p and q such that

HO-ZfHP:l] S— Cpsq”f“Hqu(Q)'

Proof. Set 8(n,m,r) =1 and suppose (2) holds. Since || K|, = O(1)
as m — oo (see P4l and Simon [3]) and r is fixed, it is easy to check for
Fn=Kq_ that

PeQrx & ”“lcykniP 5
Py _Qx—r ]z:; (Z B(n, m,r)P, ”F I )

K—r-1 pi—1
kP; P,
<C D, S R
K—r—1 P & K—r-1 1 4
g
O () 0 E ()
J:

=0

§

since P; = pg...pj—1, 2 < p; < M for all 1 and some finite M, and
0 < 6 < 1. Thus the proof is complete by applying Th. 1.0

Th. 1 can also used to obtain results for Vilenkin systems of un-
bounded type.

Corollary 2. Let o > 0 and 0 < § < 1. Suppose p, T co and g, T 00 as
7,1 —r 00. If ﬂ(n7 m, 7”) = ma'X{pn—IQm~1}1/6 * max{pn+r—IQm+r—l}2r/57

then
. 19P.,0m (F)]
onf = sup o
fm—n|<a ,B(TL, m, T)

is of weak type (1,1) and for every § <p <1 and 0 < q < oo there is a
constant Cp , which depends only on p and q such that
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loafllpg < Cpall Flla, 0@
Proof. Using the “g,,” version of (2) and the translation invariance of

Lebesgue measure with respect to i (see Vilenkin [5]), it is clear that

‘1]_1

m—
Q; Q;
1Kl < ZQ— DQm m+ZQJ+1 )dz < Z Qi
3=0
= gm-1+ Z —————~Qj <
= Qm_
0 Q_’/+1 - Gm—1
]_.
m—2 g; 00 1
< gm-1 + ——]—tl—ﬁ 1+ — = O(gm—
S g1 Z Q]+1 P dm—1 J;l 97 (Qm 1)

as m — 0o. Moreover, since the p’s and ¢’s are increasing, it is also true
that
¢ _1pj =5, _pi P <
< max{pn_1, gm-1}° max{Pn_1, gm-1}" 627;5' = max{pn_1, Qm-—l}p‘;
forall0 < j< K —rand
Pr Qx
Pr_r Qr_r

ie.,

= PKr - DE-1 " Qv - - - Q-1 < MAX]Prpr—1, Gmtr—1}

PrQx < Gm-1 >6< 1
PK—TQK—T‘ pjﬁ(namﬂ') p.’i

Since F,, = Kg,,, it follows that

PeQrx & (R IICJ,k”[P
PK—TQK—’I‘ Z (Z ,B(n m, T ”F ”

é

=0
K—r—1  /pj—1 d
kP; Pn Im—1
<C Dj 3= <
j;o ! (;pJPnPK:B(In’;mJT))
K—r—1 9 ) K—r—1 ) 00 )

;b P 1
<c (L_) —c <—J——) <c (—> < 0.0

]Z:; Px ]Z:; Dj+1---PE-1 ;0 27

For uniform convergence, Simon [4] proved that estimates of Vilen-
kin—Fourier series are sensitive to the rate of growth of the parameters p,
and ¢,,. We see that this is NOT the case for pointwise estimates since
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Cor. 2 holds for parameters which grow arbitrarily slowly and arbitrarily
quickly.

Th. 1 also contains new information about growth of Cesaro means
for unbounded Vilenkin systems even in the one—-dimensional case. For
example, the same techniques show that if p, 1 co then |op, f(z)—f(z)] =

1/n
= o(P,'") as n — oo.
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