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Abstract: Given a simple sample on R, an estimator for an apriori density
is defined as a suitable linear combination of rescaled cardinal B-splines. The
scaling is such that the knots of the B-splines are equally spaced at the dis-
tance h. It is shown that there is exactly one h such that the mean and the
variance of the estimator are equal to the empirical mean and to the unbiased
empirical variance, respectively. Extensions of this result to apriori densities
with supports in bounded or unbounded intervals are treated as well.

1. Introduction

We start with the following setup: an apriori density f on R is
assumed to be given. We also assume that we are given a sequence
X1, Xy, ... of independent identically distributed, according to f, ran-
dom variables. For given N and a window parameter h > 0, the X7,...,
Xy can be used to construct a density f; y, called an estimator, which
should approximate f as h — 0 and N — oo. In particular, a class of
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often treated estimators are the kernel estimators, see e.g. [4]. Investiga-
tions of this type belong to the asymptotic part of the estimation theory,
and this will not be discussed here.

In this note we consider a vector X = (Xy,...,Xn) € RN as a
realization of the first N random variables mentioned above. It is called
a simple sample of size N. Using X and B-splines with equally spaced
knots at the distance h, we construct an estimator f, . Asymptotic
behaviour of such estimators was discussed in [3] and [5]. Here, we are
looking for hg such that the difference between the empirical mean and
the mean with respect to fy v, and also the difference between the unbi-
ased empirical variance and the variance with respect to fs n, are mini-
mal. This approach is discussed in three different cases: X; € (a,b) for
j=1,...,N with (i) (a,b) =R, (ii) (a,b) — a bounded interval and (iii)
(a,b) — a half-line. In the last section, we outline the main steps of an
algorithm for calculating the optimal density estimator.

Note that the argument in Section 3 is in spirit probabilistic, while
the one in Section 4 is purely analytic. The first one is presented here
because it is simple and beautiful, and the second one because there is
no simple probabilistic proof of Ths. 4.1 and 4.2.

A different approach to the choice of the optimal density estimator,
based on approximation ideas, is presented in [3].

2. Preliminaries

The estimators investigated in this paper are spline functions of
given order r > 1. The knots of the corresponding splines are equidistant
and simple in case of the real line, i.e. when there are no restrictions for
. the support of the apriori density. In case the support of the apriori
density is known to be contained in an interval, the knots are again
equidistant, and the finite endpoints of that interval are assumed to be
knots of multiplicity r. '

It is well-known that splines are linear combinations of B-splines.
Therefore, we recall the properties of the B-splines needed in the proofs
below. For more details, we refer to [1], [6], [7].

For given r > 1, let Il = {7, 7 € Z} be a sequence of reals such that
T < Tict, Ti < Tigr, iMoo 7; = —o0 and lim;, 73 = +00. Such II
is a sequence of knots admitting multiplicities up to r. Now, B-splines
{N{ i € Z} of order r with knots II are defined by the formula
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(21) N (@) = (e =)l oo (- — 27,
where [7;,... , Tyy,; f] is the divided difference of order r of the function f.
In addition, define M™ = #ENZ-(T). It follows from (2.3) below that
(2.2) Mi(r) () >0 and / Mi(r) (z)dz = 1.

R

The following properties of B-splines are needed in the sequel:

(2.3) N(z) >0, supp N\ = [73, Titr] and /Ni(r) (z)dz = Tier 771
A R r

(2.4) Z N (z)=1 foreachz € R
i€Z
Let m € N, m < r. Then

(25) 2= ((F—IT) Do T 'Ti+jm> N ().

=y m /) 0<f1<..<fm<T

Let m € N. Then
m T 1
(2.6) /Rz Mi( )(m)da; = (7 Z Titjr ** Titjim>

m /) 0<j1 <o Zjm<r
In particular, we get from (2.5), (2.6) for r > 3:

T = Z ;N (z), * = Z BN (z),

with icZ ez
(2.7) a_:’Fi+1+...+Ti+,._1

' ’ r—1 ’
(2.8) B, = (Tipr + o+ Tigr1)? = (P + o+ TEy)

' Z (r—1)(r—2) )
(29) W; = /RmMZ(T) (fE) dr = .__._Ti +’r+-il— Ti+'r’

' itr)? R Y
(2.10) 2 := / .’EZMi(T)(x) dx = (it A7)+ (P .+ TH—T)
R (r+1)(r +2)

Now, we let us specify what we mean by a simple sample X: a
simple sample X = (X1,... .Xy) of size N is just a vector in RY. In
what follows it is assumed that X is given and fixed, and it is not trivial,
i.e. we exclude the case of X7 = ... = Xy. The empirical distribution
corresponding to X is denoted by Fx and it is defined by the formula

1:X; <z, 1<i<N
(2.11) Fx(z) = i Xi I },
where # A is the cardinality of the set A. We also recall that the empirical
mean my and the unbiased empirical variance s% are given by
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Xi+-+ Xy Xl—mN)2+---+(XN—mN)2
(2.12) my = N , s?\,:( N1 .

The spline density estimators based on the sample X are defined in the
following sections, separately in case of the whole line and in case of
intervals.

3. Estimators on R

On the real line, we use B("), the symmetric cardinal B-spline of
order r with simple knots {i + /2,7 € Z}. The simplest way of in-
troducing B(") is probabilistic. Indeed, B is the density of the sum
of r independent uniformly distributed on [—-1/2,1/2] random variables
(Ul, veey Ur) i.e.

(3.1) P{Ui+---+U, <t} = /t B"(s) ds.

It should be noted that B is identical with Nér) corresponding to knots
7, = —1/2 +1i,i € Z. Therefore, B") is defined on R, it is nonnegative,
supp B = [—r/2,r/2], it is a polynomial of degree r —1 on each interval
[i—71/2,j+1—7/2]|withj € Z,j =0, ... ,r—1. Moreover, for r > 2, B("
is 7 — 2 times continuously differentiable. In case r = 1 it is understood
to be left-continuous step function. For the properties of the cardinal
B-splines we refer to [6].

Now, for given value h > 0 of the window parameter, the density
estimator is defined as follows

62 Sl = h(eX) = 33 [ AR B ()

i€z
where the £ and r are given orders of the B-splines and
(3.3) B () = B®(3 —i).

It is easy to see that fj, v is a density. Asymptotic statistical behavior
of the estimator f, y(z,X) as N — oo for a given apriori density was
treated in [3] and [5] and it will be not touched here. Instead, our goal
is to find A such that

(3.4) /Ra:fh,N(:r) dx = my,

(3.5) /R (& — ma)? fon (z) do = 2,

where myy is the empirical mean and s% is the unbiased empirical variance
as given in (2.12).
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The main result of this section is the following
Theorem 3.1. Assume that we are given a simple sample X € RY and
positive integers v and k with k > 3. Then there is ezactly one h = hy
satisfying equations (3.4) and (3.5), and it is given by formula

12' SN

k+r+/N

The following lemma, collecting well-known properties of cardinal
B-splines, is basic for the proof of Th. 3.1. Although these properties
can be derived e.g. from (2.3) — (2.6), we have decided to present here a
simple probabilistic proof.
Lemma 3.2. For each positive integer k and for y € R we have the
following identities

(3.6) ho =

(3.7) / B®(g)dg =1,
R
(3.8) /:I:B(’“)(a:) dz =0,
R
(3.9) / ?B®) (z) dz = ﬁ,
R 12
(3.10) > By —i)=1,
1EZ .
(3.11) > iB®(y—i)=y for k>2,
i€Z
k
2DE) (0 s — a2 >3
(3.12) > BBy —i) =y +55 for k23

i€
Proof. Property (3.7) follows from (3.1), (3.8) follows by symmetry of
the B-spline B®) and we obtain (3.9) calculating the variance of the
random variable U; +- - - 4 Uy. Now, formula (3.10) is clearly satisfied in
case k = 1. On the other hand (3.1) implies for k > 2

P{U1+ -+ U <t}:/1/2P{U1+---+Uk_1 <t—s}ds
whence by differentiation we get_ v
(3.13) B®(#) = / Y B0 gy ds,
Thus, by induction we obtain (5;11/(?)) Formula (3.13) implies also that
(3.14) %B(’“) (£) = BED(t 4+ 1/2) — BED(t — 1/2).

For k = 2 the B-splines are continuous and piece-wise linear with knots
at the points ¢ 4+ 1/2, and consequently formula (3.11) holds. For k& > 2
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formula (3.11) follows again from (3.13) by induction. It remains to check
(3.12). Differentiation of the left hand side of (3.12), and then application
of (3.14), (3.10) and (3. 11) give

(3.15) Z'LzB(k (y — 1) = 2y,
zEZ

and consequently for some constant c

(3.16) > i?B®(y —i) =y + ¢

i€Z

In particular we obtain

(3.17) > ?BW(i) = q.
i€Z

Integration of (3. 16) over the interval [-1/2,1/2] and formulas (3.13) and
(3.17) give cpy1 = 15 + cx. It follows however by (3.13) that BO(~1) =
=1/8 = B®)(1) and B®(0) = 3/4. Thus, according to (3.17) ¢z = 1/4
and by (3.16) the formula (3.12) follows, and this completes the proof. ¢
Proof of Theorem 3.1. We observe first that by definition (3.2), prop-
erties (3.7), (3.8) and (3.11) we obtain (3.4) for each h > 0 . This means
that equation (3.4) puts no restrictions on h and that hq should be de-
termined by equation (3.5). Taking into account (3.4) we get

(3.18) /R(:L' —my) fan(z)dz = /Rmeh’N(x) dz — m%.

Now, like in the mean value case we have

(3.19) / 2 fu(z)de =) / B¥dFy - / 22B)(z

i€Z
Using properties (3.7), (3.8) and (3.9) we find that
(3.20) / 2B0)(z) dz = h¥(= + ).
X 2t

Substituting (3.20) into (3.19) and using properties (3.7) and (3.12) we
get

(3.21) /Rx Fan(z)dz = h? (12 +Z/ B\ dFx )

1€Z

k
— 2 i+/ 250 | 4 —h2< +—)+/x2dF z).
(12 o\ 2 7B | dFx PRETY R A

i€Z
This and (3.18) give
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r+k N-1
/R(x—mN)2fh,N(w)dw=h2 B + N 5?\,—.

Comparing this with (3.5) find the final equation for h, i.e.
. 12 %
T r+kN’

and this completes the proof. {

4. Estimators on intervals

Consider now the bounded closed interval I = [a,b] and space of
splines of order r with equally spaced knots Il, = {t,; : —7 <i < n+r},
with the endpoints as knots of multiplicity r each, i.e.

a for i=-r+1,...,0
(4.1) thi=qa+ib—a) fori=1,...,n-1
b fori=n, ..., ntr-1.
Let foz), , = —r+1,...,n — 1, be the B-spline of order r with the

knots t,;,... ,tnitr- Note that these are all the B-splines with support
contained in [a, b].

For a simple sample X = (X,,... , Xy) with X, € (a,b) and n > r,
we consider the following spline density estimator

42 Sa@)=ha@X) = 3 [ Narc M)
i=—r+17 [0:0]
The parameter n corresponds to the window parameter h = ”“T“
Let n, o2 be the mean value and the variance of the density fn,N,
ie. b b
43 = [ aha@is, o= [ (@ mP v

Contrary to the case of the whole line,a now i, need not be equal to
the empirical mean my, as given in (2.12). Therefore, looking for the
optimal n, we consider both p, —my and o2 — s%,. For later convenience,
introduce

(4.4) Pu(X) = pin —my, Ru(X) =02 - s4.

For a given continuous and strictly increasing functions u, v : [0, co)
— [0, 00), such that u(0) = v(0) = 0 and limy_,e u(t) = limy e v(t)
= 00, we define

(4.5) Gn(X) = u(|Po(X)]) + v(| Ba(X)]).

The value ng is the optimal n if G (X) = inf,>, Gn(X). The functions
u(z),v(z) can be taken e.g. u(z) = zP*,v(z ) = 2P* with p;,ps > 0.

[
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The main result of this section is the existence of such ng:

Theorem 4.1. Let r > 3. Let X = (X3,...,Xy) be a simple sample
such that X; € (a,b) for each j, 1 < j < N, and let G,(X) be given as
n (4.5). Then there is ng € N such that

Gy (X) = inf Ga(X).

Before we proceed with the proof, we have to calculate the coeffi-
cients @i, Bni, Wnyi, 2n,i appearing in the formulas (with r > 3)

n—1
(4.6) T = Z an,iN,(lTZ) Z B, ,N(T)
i=—r+41 i=—r+1
b b
(4.7) Wnyi = / acM,(lTZ) () dz, 2zp;= / :l:ZMT(LTZ) (z) dz.

For simplicity, we use below the symbol (n); =n(n—1)-...- (n—k+1).
Using (2.7) - (2.10) and the particular form of the knots (4.1), we find
by elementary calculation the explicit formulas for an i, Bn i, Wniis Zn,it

For —r < i < (:

_ (b—a)(@i+r),
O =0+ 2n(r—1) °’

g, alb—a)(i+r)y  (b—a)*(i+71)s(3i+3r—1)
b= a” + n(r —1) 12n2(r — 1)y ’
(b—a)(i+r+1)

2n(r +1) ’

. alb—a)i+r+1)

Zni =07 n(r +1)
(b—a)* (i +7+2)3(3i +3r+1)
12n%(r + 2), '

(48) Wpi = a +

(b—a)i N (b—a)r

Cni = Wn; = G+

n In )
49)  pymaytlCE) 0o EC o)
=ty M= @)@itr)  (b—a)’B2i+r)+r)

o n 1202
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b (b—a)(n—1)y

O = on(r —1)
2, bb—a)(n—1i)y (b—a)*(n—i)s(3n—3i—1)
s I 12n%(r — 1), ’
. (b=a)(n—i+1),
(410) Whp,i = b 2’}’),(’]‘ i 1) ;
TR bb—a)(n—1i+1),
m n(r +1)
(b—a)’(n—i+2)3(3n—3i+1)
+ 12n2(r + 2), '
Now, we can write (cf. (4.4)) .
1 N n-1 .
(411) =+ Zw = an )N (X;),
(4.12) 1 Rn(X) =
=72 2 Gni = BIVE) ~ PulX)(2ma + P(3)) — .

j=1 i=—r+1

Thus, for given functions u, v, formulas (4.8) — (4.10) allow us to calculate
explicitly Gr(X) = u(|Po(X)]) + v(|Ra(X)))-
Proof of Theorem 4.1. For given X = (Xi,... Xy) with X; € (a,b),

let
h—
0 =min{X; —a,b—X;:1<j< N}, ngzmin{nEN:T( a)<5}.
n
Now, for each n > n; and —r <i<0,orn—r <i <n, and 1<j<N
we have N( )(X ;) = 0. Using this, (4.11) and formulas (4.9) for Ot iy W 4
we get for n > ng

j
Similarly, we have by (4.9) and by the partition of unity property (2.4)

1 N  n-1 . b— a)?
2N Cui BN = T2

Jj=1 i=—r+1

hence by (4.12)
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r(b— a)? Sk

6n2 N’
Let h > 0 be such that “¢=2" “) h? =28 andletl e N be such that <h<
< 727 Observe that for n > [ we have |Rn(X)| = 4 — ——~ Wthh is

increasing in n. Thus, for n > max(ns,[) we have G ( ) = ’U(|Rn( M),
and G,(X) is incresing in n. Therefore

inf G,(X)= min Gp(X),

n>r r<n<max(ns,l)
and now it is enough to find ng, r < ng < max(ng, ) such that
(4.13) Gro(X)= min  Gp(X). 0

r<n<max(ng,l)

4.1. Estimators on half-lines

Let us discuss briefly the case of [a,00). Now, it is assumed that
the sample X = (X, ... ,Xy) satisfies X, € (a,00), 5 =1,...,N.
In this case, for given A > 0 and r > 3, we consider the following

knots on [a, c0): a for i=-r+1 0
L Y
hi a-+ih fori=1,2,...,

i.e. a is the knot of multiplicity . Now, we take the respective B-splines

N,Srz) with i = —r 4+ 1,..., and the corresponding estimator
W1 fune) = Fur@X) = Y |, Midar uije)
t=—r-1 “ °°

Like in the case of the finite interval, we are looking for hg such that

Gho( )—iggGh( )’

where G1,(X) is defined by means of (4.3) — (4.5), with B, Ry, tin, 02,
fn.n, [a,b] replaced by Py, Ry, tin, 02, fan, [a,00), respectively. We have
- also in this case the following theorem:

Theorem 4.2. Let 7 > 3. Let X = (X4,...,Xn) be a simple sample
such that X; € (a,00) for each j, 1 < j < N. Then there is hg > 0 such

that Gho(X) = 1nf Gi(X).

The proof follows the same lines as the proof of Th. 4.1. It should
only be noted that formulas (4.6), (4.7) take now the form

z= . aniN{)(z),  2P= Y BN (),

i=—r+1 i=—r+1
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wh,i:/ mM,(:i)(x)dx,zh,i:/ sz,(fz)(a:)dm

This time, the coefficients ap i, B, Wh.4, 2 for —r < i < 0 are calculated
by formulas analogous to (4.8), and for ¢ > 0 by formulas analogous to
(4.9), with 9;—“ replaced by h. Using these formulas, one can check that
limp o0 |4 — my| = co. For small h, the argument used in the proof of
Th. 4.1 can be repeated. The remaining natural changes in the proof
are omitted. ¢

Finally, let us note that the case of the interval (—co,b] can be
- handled by treating the sample Y = —X in the interval [a oo) with
a = —b.

5. Algorithm for the optimal estimator

There are two parts of the algorithm:
(i) Calculating linear combinations of B-splines at a given point.
For this, we refer to [2] or [7]. This allows us, for given sample and
window parameter h (or n), to calculate the coefficients in (3.2), (4.2),
(4.14) and the estimators themselves.
(ii) Calculating the window parameter:
(a) In case of the whole real line, the optimal value of the window
parameter is given directly by formula (3.6).
(b) In case of bounded interval, given the functions u,v, the
optimal n can be found by (4.13). Moreover, it follows from the proof of
Th. 4.1, in the notation of that proof, that to find

min  Gp(X)

r<n<max(ngs,l)
in case ns < I, it is enough to calculate
Gi(X), G1(X) and min G,(X).

r<n<ng

Indeed, we have for ng < n < I
r(b—a)? 5%

RaX)] = T o

and in this range of n’s |R,(X)| is decreasing in n. Thus, G,(X) =
= v(|R,(X)]) is also decreasing on ns; < n < [, which implies that in this
case
min  Gp(X) = min G,(X) = min{G|(X), G,;_;(X), mm Gn(X)}.
<ns

r<n<max(ns,l) r<ngl

To calculate G,(X), we combine formulas (4.4) - (4.5), (4.11) - (4.12),
(4.8) - (4.10), and then apply the algorithm mentioned in (i).
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(c) In case of half-line, given u,v and h > 0, the value of G;(X)
can be calculated using the algorithm mentioned in (i). Then, one should
apply any algorithm for finding minimum of a function.
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