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Abstract: In this paper we study the automorphism group of the free nilpo-
tent algebra Fp,(N.) of class ¢ and m generators over a field K of characteris-
tic 0. Under some restrictions on m and ¢, we have found three automorphisms
which, together with the general linear group GLm,(K) generate the whole
group of automorphisms. A similar problem has been considered by Drensky
and C.K. Gupta for free nilpotent Lie algebras and free nilpotent metabelian
Lie algebras.

Let K be a field of characteristic 0. Drensky and C.K. Gupta [3]
have shown that the automorphism group of the free metabelian and
nilpotent of class ¢ Lie algebra L,,(N.MN A?) of rank m is generated by
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the automorphisms induced by the action of the general linear group
GL,,(K) and by one more automorphism d; defined by 61(z1) = =1 +
+ [z1, z2], 61(z;) = zj, j > 1. (Another proof of this result based on
different techniques is given by Papistas [6].) As a consequence in [3]
it has been established that for m > c the automorphism group of the
free nilpotent Lie algebra L., (N.) is generated by GLm (K ) and the
same automorphism &;. The approach in [3] is based on the represen-
tation theory of GL,,(K). Using the same approach and the result
of Anick [1] that the tame automorphisms of the polynomial algebra
Klzi,...,Tn] form a dense subgroup of the whole automorphism group
with respect to the formal power series topology, one can show that the
automorphism group of the free nilpotent of class ¢ commutative and
associative algebra F,,,(ANN,) is generated by GL,(K) and one more
automorphism & defined by 62(z1) = z1 + 2122, 2(z;) = 25,7 > 1. In
this paper we establish the following main result.

Theorem. Let F,,(N.) be the free nilpotent of class ¢ associative al-
gebra freely generated by 1, ... ,Tm over a field K of characteristic 0,
m > 2. Let §;, i =1,2,3, be the automorphisms of F,(N;) defined by

61(z1) = 1 + @1, 2], 62(21) = 71 + 7172, 03(21) =
= z1 + 2329, 6;(z4) = zj, 7 > 1.

If c =3 and m is arbitrary, or if m =2, ¢ <7 or if m and c satisfy the
inequality m(m—4) > c¢—2, then Aut Fr,(N) is generated by GLp, (K)
and the automorphisms 1,02, d3.

Our proof is based on the same idea as in [3]. Some factors of the
subgroup of Aut F,,(N,) generated by GL,,(K) and 41, ds,d3 have a
natural structure of GL,,(K)-modules and we show that these factors
are isomorphic to the corresponding factors of the whole automorphism
group. The main difference of our approach from that in [3] is the fol-
lowing. The essential difficulty in [3] is to handle the case of the au-
tomorphisms of the free nilpotent metabelian Lie algebra. It turns out
that the number of the irreducible GL,,(K)-submodules in all factors
in consideration is bounded. In our case this number is not bounded

and we have further developed the technique from [3].
The paper is organized as follows. In Section 1 we present nec-

essary preliminaries, fix the notation and consider the simplest case of
nilpotent of class 3 algebras. Section 2 is devoted to the automorphism
group of the free nilpotent algebras in two generators and of class < 7.
Finally, in Section 3 we handle the case m > 2 and m(m —4) > ¢ — 2.
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The results of our paper have been announced in [4]. Due to a
technical error, in [4] we have imprecisely stated that GL,,(K) and the
automorphisms d;, j = 1,2, 3, generate Aut F,,(N.) for m? > c—1. We
still do not know whether Aut F,,,(N.) is generated by GL,,(K) and
05,7 =1,2,3, for any m and c.

1. Preliminaries

Throughout the paper we fix a field K of characteristic 0 and all
algebras, vector spaces and tensor products are over K. We also fix the
set {Z1,...,Zm}, m > 2, as a set of free generators of the free algebras.

We start with the necessary background on the representation
theory of the general linear group GL,, = GL,,(K). We follow the
exposition from [3] and [2]. Let V,, be the vector space with basis
Z1,...,Tm and let GL,, act canonically from the left on V,,. We con-
sider the elements from GL,, as invertible m x m matrices with entries
from K. For an s-dimensional vector space W, also with a fixed basis,
a homomorphism

¢:GL, — GL; = GL(W)
is called a polynomial representation of GL,, if the entries ¢,4(g) of
the s X s matrix ¢(g) are polynomial functions of the entries a;; of
the matrix g = (a;;) € GLy,. Similarly, if ¢,,(g) are rational func-
tions of a;;, then ¢ is called a rational representation. If the functions
¢pq are homogeneous of the same degree, the representation ¢ and the
corresponding G L,,-module W are called homogeneous. Let
Dp={d€GLp |d=(21,... ,2m) = 21611 + - - - Zm€mm }
be the subgroup of the diagonal matrices of GL,,. For any degree

sequence o = (@yq,. .., Q) of length m we define the a-homogeneous
component of the GL,,-module W by
W*={weW|d(z1,...,2m)w=27"...25"w, d(z1,... ,Zm) € Dn}.

We shall use the following well known statements for the finite dimen-
sional rational representation ¢ : GL,, — GL(W).

1. The GL,,-module W is completely reducible and is a direct
sum of its homogeneous submodules.

2. As a K-vector space, W is a direct sum of its homogeneous
components W<,

3. The Hilbert series of W

HW) =H(Wt1,... tm) = > (dimg W*)t5* . t2m

is a symmetric function in #4,... , ;.

b

Ry
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4. If (det)”, n € Z\ {0} is the one-dimensional representation of
GL,, defined by
(det)"(g) = (detg)",
then every rational G L,,-module has the form W or (det) " ®W, where
n € N and W is a polynomial GL,,-module; (det)™" ® W is irreducible
if and only if W is irreducible. The Hilbert series of det™ is

H(det") = (ﬁtz> .

The irreducible polynomial representations of GL,, are described
by partitions and Young diagrams (see e.g. [5, 7]). For a partition A =
=M1y Am), A1 > ... > A >0, A1 +...+ Ay, = n, we consider the
corresponding Young diagram [)] and the related GL,,-module W, (A).
A )-tableau with content o = (ai,...,am) is a diagram [A] whose
boxes are filled in with oy numbers 1, ..., a;, numbers m. A tableau is
semistandard if its entries do not decrease from left to right in the rows
and increase from top to bottom in the columns. The Hilbert series of
the module W, () is equal to the Schur function Sx(t1,...,tm),

HWap(A),t1, .o tm) = Salts, ... 1 tm) =

= dimg (Wi (X)) 285" .. . tom,
where the coefficient a, = dimg (W, ()\))® is equal to the number of
the semistandard M-tableaux of content @ = (a1, ..., Q).

Let N, be the variety of all nilpotent of class < ¢ associative
algebras. By definition, this is the class of all algebras satisfying the
polynomial identity z; ...z, = 0. We fix the notation

F = F,(N,)

for the free nilpotent of class c algebra of rank m. If A,, =K (z1,..., Zm)
is the free associative nonunitary algebra of rank m, then F & A,/
JAS,. Every map € : z3 — F, s = 1,...,m, is uniquely extended to
an endomorphism ¢ € End F of the algebra F'. Since F' is nilpotent, ¢
is an automorphism if and only if it induces an invertible linear map
on the vector space F/F2. Therefore, an endomorphism ¢ € End F
is an automorphism when there exists a ¢ € GL,, (considered as an
automorphism of F) such that g~ o ¢(x,) = 25 + us, us € F2, s =
=1,...,m. We consider the descending series of normal subgroups of
Aut F

IA={pc AutF | ¢(z;) = x5 +us, us € F¥, s =1,...,m}.
Clearly
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LA>IA>...>1.A=(d).

The factor groups IxA/Ix1A are abelian and Aut F = GLn,.I5A, ie.
Aut F is a split extension of GL,, and IoA. Let F(k) be the homoge-
neous component of degree k of the algebra F. The group GL,, acts
diagonally on F(*) by ‘

9(a(es, ... ,2m)) = a(g(@1), - ,9(om)), g € GLm,a € F®.
We define a map
in the following way. If ¢ € I} A and ¢ = @I 1A, where ¢(z;s) = z5 +
+as+bs, a; € FF) b € F*+1 5 =1,... m, then

¢ = Gk((lb) = (a’l’ < aa'm) € (F<k))®m
We do not write the index k of 8y if it is clear from the context. By [3]
6 is an isomorphism of the multiplicative group IyA/I;41A and the
additive group (F*))®™ and, if ¢ € Iy A/I;11A we write ¢(zs) = 5 +
as, s =1,...,m. The group I A/Ix,1A admits also the multiplication
with elements from the base field K. If ¢(z,) = z5s + a5, s =1,... ,m,
and v € K, then
(vd)(zs) = x5 +vas, s=1,...,m,

and in this way Iy A/Iy41 has a natural structure of a K-vector space.
The addition is replaced by the composition of automorphisms and the
multiplication by scalars is as defined above. Since 8(v¢) = v(8(¢)), the
group isomorphism @ is also an isomorphism of vector spaces and very
often we shall identify I A/Iy41A and (F*)®™ via 9. The groups Iy A
are normal and they are invariant under the conjugation by elements
from GL,,. It turns out that the action

goe d) = (g¢g_1)Ik+lAa gc€ GLma ¢ € IkA7
equips the vector space I A/ Iy 1A with the structure of a GL,module.
This action induces a GL,,-module structure also on (F(*))®™ de-
scribed as follows.
Proposition 1.1 [3]. Let ¢ € IzA/Ix 114, 0(¢) = (a1,...,am) €
c (Fk)®™ . Considering 8(¢) and g € GLy, as a row vector and an
m X m matriz, respectively, it holds

go (ala re. ,a'm) = (g(a1)7 s ag(a’m))(bij)’
where (b;;) = g~ .
Example 1.2. Let u = x,, ... 1p,, degmj u=oq5j=1...,m, and
let ¢ € IyA be defined by é(z;) = zs + u, ¢(zi) = z;, ¢ # 5. If
d=d(z1,...,%m) is a diagonal matrix from GL,,, then
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dog¢ = zf‘l .. .Z%nglqza
i.e. the element 8() of the GLy,-module 8(IxA /I 1A) = (Fk))@m i

homogeneous of degree (a1,... ,05-1,as — 1, Qs11,. .- , Q).
Similarly, the element (f1, ..., fm) € (F®))®™ is homogeneous of
degree a = (ai,...,an) if every polynomial f; € F(®), 4 =1,... m,

is homogeneous of degree a; + 1 in z; and «; in the other variables
zj, j # 1. For example, for m = k = 3, the elements (z?z5,0,0) and
(12921, 123, T12322) are homogeneous of degree (1,1,0).

One of the key observations in [3, 2] is the GL,,-module isomor-
phism

LA/ T A= det ™ @W,,, (1™ 1) @ FO),

The G L,-module decomposition of the homogeneous component of de-
gree k < c of the free nilpotent of class c algebra is the same as that of
the homogeneous component of the free associative algebra (or of the
k-th tensor power of V,,,), i.e.

F®) 22N " dy\ Wi (N),
where the summation runs on all partitions A = (A1,...,Am) of k.
Since for A = (A1,...,An), Ap > 1,
, det ™" @W,(A\) X Win(A1 — 1,... , A — 1),

as in [3] we can use the Young rule in order to calculate the multiplicities
of the irreducible components of Iy A/Iy.1A. In particular, we obtain
Corollary 1.3. The GLy,-module I A/ Iy 1 A is isomorphic to a direct
sum of irreducible G Ly, -modules of the following kind:

(1) Wm(p), where p= (u1,. .-, fim) is a partition of k — 1;

(i) det™ @Wim (1), where ' = (i, ..., pul _1,0) is a partition of

k+m—1.

Let d;, 1 € I, be automorphisms of F', where I is a set of indices,
and let

G =(GLp,d; |iel)
be the subgroup of Aut F,,,(N,) generated by GL,, and 6;, i € I.
Proposition 1.4 [3]. Let G C (F(1)8™ be the image of (G N
NI.—14))/(GNI.A) (2 GNI._1A because I.A = (id)) under the
isomorphism 6. Then G is a GLy-submodule of (F(c—1))@m.

The following assertion follows easily by induction as in the proof
of [3, Th. 3.7]. Since we consider nilpotent algebras, it is equivalent
to [2, Cor. 2.9].

Corollary 1.5 [3, 2]. Let G = (GLn,6; | i € I) C Aut F,,(N.) and
let
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(G N IkA)/(G N Ik+1A) = I]cA/I]H_lA, k=2,...,c—1.
Then the groups G and Aut F,,,(N.) coincide.

We shall use the following technical assertion which is a conse-
quence of Prop. 1.4 and the fact that every rational GL,,-module is a
direct sum of its homogeneous K-vector spaces.

Corollary 1.6. In the notation of Prop. 1.4 let & = <51 +.. .—i-q;s € C:’,
where ¢;, j = 1,...,s, are the homogeneous components of ¢ in the
GL,,-module G. Then gg €q, j=1,...,s.

Definition 1.7. Let W;, 7 € I, be the irreducible components of the ra-
tional GL,,-module W. We call the content o = (a1, ..., am) essential
if all homogeneous components W2, ¢ € I, are nonzero.

Clearly, if o is an essential content for the GL,,-module W and
W1 is a submodule of W, then the equality

dim K Wla = dim K we
implies that W; = W.
Lemma 1.8. Let A = (A1,...,Am) be a partition of s, s = pm-+r, 0 <
<7 <m. Then the content o = (p+e€1,...,p+€m) is essential for the
GLy-module W, (X), whereer =...=¢e, =1, 6,41 =... =gy = 0.
Proof. It is sufficient to show that there exists a semistandard \-tableau
of content o. We use induction on s and m. The base of the induction
m =1, s any and s = 1 and m any is obviously true. We assume that
the statement holds for all mg < m and sg < s.

Case 1. Let A, # 0. If T is a semistandard A-tableau, then
each of the first A, columns of the diagram [)\] is filled in with the
integers 1,... ,m. We delete these columns and reduce the problem to
the existence of a semistandard v-tableau of content 3, where

V= (Al—Am, ,)\m_l—/\m,O), ﬁ_—‘ (al——)\m,... ,Olm—Am).
Since v is a partition of s — mA,, < s, we use the inductive assumption
and obtain that o is an essential content for W,,,()\).

Case 2. Let A\, = 0. We consider all the boxes of the diagram [)]
which are in the bottoms of the columns of [A]. The number of these
boxes is Ay > p and we fill in p of them with m. We delete these p
boxes and obtain a new diagram [v]. In order to make the inductive
step we have to construct a semistandard v-diagram of content 8 =

= (01,... ,@m-1,0). Since v = (vq,...,Vm_1,0) is a partition of s —
—p<s,ands—p=pm—-1)+rifr<m—-1,ors—p=(p+1)(m—1)
if r =m 1, by the inductive arguments the content (a1, ..., am_1) is

essential for the GLp,_1 module Wp,_1(v1,... ,Um_1). ¢
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Corollary 1.9. Letk—1=pm+r, 0 < r < m. Then the content
a=(p+et,...,p+En) is essential for the GLpy-module IxA/Ix 1A,
wheree; = ...=¢e, =1, €py1=...=€m =0.

Proof. By Cor. 1.3 the GL,,-module I3 A/I; 1A is a direct sum of
irreducible submodules W, (1), where pu = (u1,... , m) is a partition
of k—1, and det ™ @ W, (1'), where ' = (i, ... , b, _1,0) is a partition
of k +m — 1. The submodules W,,, (1) are covered directly by Lemma
1.8. In order to prove that the homogeneous component of degree o
of W = det ™' ®W,,, (1) is not zero, it is sufficient to show that the
coefficient a, in the Hilbert series of W

W)= aptl ...

(W) =) bgts* ...thr

is the Hilbert series of W(,u ), then

HW) = (t1...tn)) T HW, ().
Therefore, a, = by, where @ = (a1 +1,...,am+1). Again, the proof
follows directly from Lemma 1.8. {
Remark 1.10. Let o € S,, be an element from the symmetric group
S of degree m and let g, € GL,, be defined by g,(z;) = To(s), & =
=1,...,m IfweW= (F&)®m and w = (f1,..., fm) € W2, then
direct verification shows that g, o w € W#, where 8 = (B4,...,8m) is
obtained by permuting of o = (@1, ... ,am) by o=, We shall use this
statement only in the case when o is a transposition.
Proposition 1.11. The automorphism group of the free nilpotent of
class 3 algebra F,,(N3) of any rank m is generated by GL,, and the
automorphisms 61 and s defined by '

81(z1) = m1 + =3, b2(z1) = o1 + [z1, 32,
5j(£l?i):.’L‘7;,’I::2,...,m, j=1,2.

Proof. Let G be~the subgroup of Aut F,,(N3) generated by GL,, §1
and d, and let G be the image under 6 of (G N I, A)/(G N I3A) =
= GNLA EW = 0(,A/I34) = (F@)®™, by Corollaries 1.5 and
1.9, it is sufficient to show that G = W for « = (1,0,...,0). The
homogeneous component W< has a basis
{(z%,0,...,0),(0,...,0,212;,0,...,0),
©,...,0,z;21,0,...,0) |1 =2,...,m},

where ziz; and z;x; are in the ¢-th position. We shall complete the

is different from 0. If
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proof in two steps.
' Step 1. Clearly, 6 € G. Let g1 € GL,, be defined by
g1(z1) = z1 + x4, g1(2s) = 25, s # 1.

Then g7 (z1) = &1 — i, 97 - (z) = &5, s # 1, and direct calculations
show that ' ‘
(91001)(z1) = g16197 H(21) = 1+ (1 + @)%, (91061)(z5) = @5, s # 1.
By Cor. 1.6 the homogeneous components of g; o 61 also belong to G.
Considering the component of degree (0,...,0,1,0,...,0), where 1 is
in the i-th position, we obtain that ¢ = (z10z4,,...,0) € G, where by
definition z; o z; = 212; + z;z1. Let 0 = (17) € S, and let g, € GLy,
be as in Remark 1.10. Then _

i =gs0%=1(0,...,0,z102;,0,...,0) € G.

Step 2. We start with 85 = ([z1,22],0,...,0) € G. Forr = (12) €

€ Sm, 9+ € GL,,, we obtain : »
gr © 02(22) = T3 — [z1, T3], gr 0 82(2s5) = zs, 5 # 2,
T =gr 08y = —(0,[z1,23],0,...,0) € G.
For p = (2i) € Sm, g, € GL,, we calculate
¢ =g,07=—(0,...,0,[z1,2],0,...,0) € G.
Since 51, 7; and Ei, t=2,...,m, belong to G and form a basis for the
whole homogeneous component of degree a = (1,0,...,0) of W, we
obtain that G* = W and this implies that G = W. ¢

The following technical lemma is useful in the further computa-
tions. It is a restatement of [2, Lemma 2.3, Remark 2.4].

Lemma 1.12. Let ¢ € It A and ¢ € I} A be automorphisms of F =
= Fn(N,.), k+1 < c. Then the group commutator (¢,v) = ¢~ =11
s in Iy 1A If

6= (f1,--- 1 fm) € FP)O™ § = (g1,... ,gm) € (FU)O™,
then 0((é, ¥)Ixs1A) = (b1, ..., hy) € (FEH=IN®™ sotisfies
hi = gi(T1+ f1,- - T+ frn) (ri—1) + FilT1 =91, - -+ s Trn — Gm) (kri—1)>
where we denote by u() the homogeneous component of degree s of u €
€ F.

For simplicity of notation, when k and [ for ¢ € [xA and ¢ €
€ I;A are clear from the context, we shall write (¢,v) instead of
Okt1—1((@, V) In 11 A).

Remark 1.13. In the notation of Lemma 1.12, let A4 be the derivation
of I defined by Agz; = f;, i =1,...,m; we define Ay in a similar way.
Then




80 ‘ V. Drensky and D. Stefanov

(6,9) = (Apg1 — Ay f1, .-, Bggm — By fm)-
Example 1.14. Let m = 2, ¢ > 3, and let @, € I3 A be such that

¢ = (z3,0),9 = (z1 022,0) € F® @ FO),
Then, modulo F*,
(8, 9)(21) = 21— (g1 0 22)T1 + T2 (T1 0 2)) + 2T 0 T3 =

= T1 — 2212271, (¢, ¥)(z2) = T2

(,9)
¢ = (a3,

Hence
= ( IIJ1$2(L‘1 0) F(S) &) F(3)
) (07 ml)’

Similarly, for P =
(¢,9) = (g2 02}, —21 0 23).

2. Nilpotent algebras with two generators

Till the end of the paper we fix the notation dy,ds,ds for the

automorphisms of the algebra F' = F,,(IN.) defined by

51(371) :1:1‘{‘-’13%, 53(:131) =331+:L’%£C2, 52(331)‘: 1+ [131,272],

5_7(121) = Tyg, ) 75 1, _7 = 1,2,3.

Especially in this section we denote by G = (GLs, 61, 62, 83) the sub-
group of Aut F' generated by GLj and §;, j = 1,2,3. Here F' = F5(N,),
c=4,5,6,7.
Proposition 2.1. The group Aut F3(Ny) is generated by GLy and §;,
i=1,2,3.
Proof. Let W = 03(I34/I,A) = F®) @ FO) and let G = 05(GNI34)/
/(GNI4A) C W. In virtue of Cor. 1.9 the proof of the proposition will
be completed if we establish that G® = W for the essential content
a = (1,1). The following elements form a K-basis for the homogeneous
component W (L:1)

e1 = (z12971,0), ez = (z333,0), e3 = (z22%,0),
es = (0,zaz172, €5 = (0,7371), es = (0,z122).

If o = (12) € Sy, then the element g, € GLy defined in Remark 1.10

satisfies ,
gooe =ejr3,1=1,2,3.

We shall show that e;, ez, e3 € G _in several steps.

Step 1. Let ¢ = (23,0),9 = (21 025,0) € F® @ F@ . By
Prop. 1.11 there exist automorphisms ¢ and v in G such that their
images in 6 : [LbA/I3A — F® @ F®) coincide respectively with ¢
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and 9. In Ex. 1.14 we have seen that the image (¢,%) in W of group
commutator (¢, 1 is 2(z1z9z1,0), i.e. e; € G. Therefore, e4 also belong
to G.

Step 2. Let g € GLa, g(z1) = —2z1, g(x3) = z5. We calculate for
€ = go ¢, that
e(z1) = z1 — 223, 62(z1) = =1 + 222 + 225, e(z2) = T2, 63(z2) = o,

(e063)(z1) = z1 — 623, (e o 63)(z2) = x4,

ie. (23,0) e G.

Now, let g1 € GL3, g1(z1) = z1 + z2, g1(x2) = z5. Then

g1 0 (21,0) = ((z1 +22)*,0) € G.

Considering the (1,1)-homogeneous component of this element, which
is also in G, we obtain e1-+ez+es € G. Since e1, ez € G, this gives that
es € G. In this way, all basis elements e;, j = 1,... , 6, of the K-vector
space WD) are in G(11) and this implies that G = W. ¢

In the following considerations m and ¢ are arbitrary and F =
= Fn(N.). Let * be the involution of F' given by

(937;1 . e .CL‘ik)* =Ty + - T4y -

For an automorphism ¢ of F' we denote by ¢* the automorphism defined
by ¢*(z;) = (¢(x;))*. Clearly, * induces a K-vector space automor-
phism of F*), k=1,2,...,c—1, and if ¢ € I} A, then ¢* ¢ I A.
Lemma 2.2. If¢ € It A, ¢ € LA, then for the group commutators of
¢ and 1 it holds

Okt1-1((8,¥)") = Opy1—1 (8%, ¥%).
Proof. Let ¢ = (¢,9) € Ijy_1 4,
6 =0k(8) = (f1,..., f) € (F®))Om™,

w = 9l(¢) = (917' .. ,gm) € (F(l))GB’m
By Lemma 1.12, the coordinates h; of

¢ =0rt1-1(¢) = (h1,. .. , hy) € (FEH-1)0m
are equal to the homogeneous components of degree k+1 — 1 of
@1+ fiooo B+ )+ fi(z1 — 91, T — Gm)-
Since * is an involution of F', we obtain
9:((331 + fl)*a sy (wm + fm)*) + fz*((ml - 91)*7 S (mm - gm)*) = h;'k:
and this completes the proof. {
Proposition 2.3. The group Aut F»(Ns) is generated by GLy and 45,
j=1,2,3.
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Proof. We repeat the scheme and the notation of the proof of Prop. 2.1.
By Cor. 1.9, the content o = (2, 1) is essential for the GLy-module W =
= 04(I,A/I;A) = F9 @ F® and it is sufficient to show that G* = W,
where G is the image of G in W. The basis of the K-vector space W*
consists of

€1 — (w%mga O)a €2 = (53133%531; 0)) €3 = (m%m%, 0)7
€4 = ((5’31932)2,0), €5 = ((352931)2,0), € = (33233%532,0),
er = (0, z123), es = (0, z2z123), ey = (0, TaT113),

€10 = (07 iL‘gCCl)
We make use of Prop. 2.1 and assume that for any (f1, f2) € Fk) g
"@F() k=2 3, there exists a ¢ € G such that 0 (¢IzA) = (f1, f2). We
shall complete the proof in several steps. In the following calculations

b9 € G. ] )

Step 1. Let ¢ = (0,z2), ¢ = (z3z3,0). Then we calculate that

(¢ ¢) (.’121562, 0) = €] S G.

By Lemma 2.2 we obtain that e3 € G.

Step 2. Let ¢ = (z9z1,0), ¥ = (z2z5,0). Then

(¢’71[)2 = ((331332)23 O) =e4 € G, GZ =e €G.
Step 3. Let ¢ = (0,z2), ¥ = (z12271,0). Then
5 (¢a ¢) = gxlmgmlyo)a ez € G.
Step 4. Let ¢ = (x2,0), ¥ = (222122, 0). Then
(¢,%) = (zaziz2 — (T122)? — (2221)%,0) =eg —es —e5 € G, g € G.

In this way all vectors (f,0) € W are in G* and in the rest of the
calculations we are not interested in the first coordinates of the elements
of G%: if (fl, f2)~€ Ga, then (0 fg) € Ge.

Step 5. If ¢ = (z122,0), P = (0, z173), then for some f € F(%2)

(?7 ¢) = (f) 121(132) € G7 €r,€10 = 67 € G
Step 6. If ¢ = (z271,0), ¥ = (0, a:lmz) then for some f € F(%2),
(6,%) = (f, z2w123) € G, e5,e0 = €} € G.

In this way, alle; € G, i =1, ... ,10. O
Proposition 2.4. The group Aut F5(Ng) is generated by GLy and §;,
j=1,2,3.
Proof. We repeat the arguments from the proof of Prop. 2.3. The
content @ = (2,2) is essential for the GLo-module W = 05(IsA/Is A).
The subspace of W*, consisting of all vectors (f,0) has a basis
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e1 = (22z22122,0), ey = (£1222275,0), ez = ((z172)%71,0),

es = (222315, 0), es = (zazir921,0), eg = (zaziz27?,0),

er = (2223, 0), eg = (z12212,0), eg = (x2z3z1,0),
e10 = (z322,0).

The basis of the subspace of W% consisting of all vectors (0, f) has a
basis

{gsoex | k=1,...,10},
where 0 = (12) € S; and g, € GLg was defined in Remark 1.10. It is
sufficient to show that e; € G,i1=1,...,10.

Step 1. The elements ey, ... ,e1g are of the form (z7*zoz5%27%,0).
Starting with ¢, € G such that

¢ = Ok (¢Ix114) = (0,252, % = O (Y1111 4) = (s} 72252, 0),

k =a9,l =a1+ a3+ 1, we obtain
(6, %) = Oppi—1((¢, V) e A) = (25 z2z3?252,0) € G

and e7,...,e1q € G.

Step 2. For & = (mlmg, 0), 1,5 = (33133233%, 0),

(d) ’lﬁ) (:El.’L'Z.’E% -+ (331372)211:1, 0) —=e3+eg € é, es3 & é
Step 3. For ¢ = (£3,0), ¥ = ((z122)?,0),
(¢,9) = (1202329 — (2122)%21,0) = ey — e3 € G.

Hence e € G and by Lemma 2.2, e5 € G.

Step 4. For ¢ = (z3x,,0), ¥ = (z12921,0),

(¢,9) = (222221 — sizoz 120, 0)=e9—e1 € G.

Hence e; € G and by Lemma 2.2, eg € G.

Step 5. For ¢ = (22,0), ¢ = (z323z,,0),
(6, %) = (2222322~ 712223 22— T227 2921, 0) = 2e4—e3—€5 € G, e4 € G.
In this way G® =W and this gives that Aut F =G = (GLy, 61,62, 83)
and this completes the proof. ¢
Proposition 2.5. The group Aut F(IN7) is generated by GLy and §;,
i=1,2,3.
Proof. Again, we repeat the arguments from the proof of Prop. 2.3.
The content o = (3,2) is essential for the GLy-module W = g(lgA/
/I7A). The subspace of W consisting of all vectors (f,0) has a basis
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e1 = (z3za1122,0), = (z2z9231,, 0), = (22(zy21)?,0),
es = (z122732921,0), €5 = (z122232,,0), = ((z122)%23,0),
e7 = (zoxizs,0), es = (zyz3z021,0), = (zoz2z912,0),
e10 = (zaz17023,0), e11 = (z2z%0), e1s = (z17323,0),
e13 = (ziz222,0), e1a = (z32221,0), e1s = (z1z2,0).
First we shall prove that all (f, YO) € W* belong to G. The elements
ei1,- .. ,eis are of the form (2] zaz322$2,0). %s in the first step of the

proof of Prop. 2.4 these basis elements are in G. The next calculations
show that all elements (f,0) € W are also in G®.
For ¢,% € G such that ¢ = (z12521,0), ¥ = (22251, 0) we obtain
that -
(6, %) = (501532351902931, 0)=e3€G.
Hence, by Lemma, 2.2, eg € G. Similarly, we choose properly ¢,v € G
and compute (@, ).

¢:(m1$27 0)1 "Z: (37?332’ O)’

&Z(wlmzao)a 1/)~=(51315821L‘1,0), 9571;
95 (33%70) 1/;”—‘(3'31513253111”2,0), M =—e4+ 2e5 € G~"; €s5,€e8 € G.
qz:(w%’o)a ¢ (172.’1,‘1.'1}2,0) (957'(; =—€5 + 367 —eg € é; er € é

Now we shall establish that all (f,0) € W# are also in GP for 8 =
= (2,3). Then, by Remark 1.10 for ¢ = (12) € S5, this will imply
that all (0, f) € W2 are in G® and this will complete the proof. All
the polynomials f for the vector space {(f,0) € W#} are homogeneous
and deg,, f = deg,, f = 3. Hence this vector space is of dimension
(g) = 20. It has a basis e; = (f;,0), ¢ =1,...,20, where

— 3.3 _ .2 2 2.2 _ 2.3
f1=ziz;, Joe = xiz2T123, f3 =xiToT122, fa = ziTHI1,

2 2.2
fs = t1maxind, fo = (2122)%, fr = mizamiaiey, fo = zizdciz,,

fo= f7, fio = fff, fi1= mzmiwi, fi2 = :32513%32531372,
fis = f3, fia = fi5 fis =715, fie = f3,
fir = fi1 fis = f5, fio = f3, f20 = f1,

where the involution * is defined above Lemma 2.2. Four of the ba-
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sis elements .61,64,610,620 belong to G because they are of the form
(z7*z225721%,0). For the other elements we work with ¢, € G and

compute (¢, 9):

$= (z122,0), p=(212323,0), (B,9)=eo+ew € G; eg,e7 € G.
¢=(23},0), ¥=(21232122,0), (f,P)=es—ey € G; es,e13 € G.
(;S:(:cf,O), = (z17271735,0), (&: })=es—er € G; e5,e15 € G.
52(332331,0): ¥ =(z3z3,0), (§, ) =eates € G; ea,e19 € G.
¢~5:(x1$270), %Z:(xlﬂiﬁlwz, 0), (¢ ,1;): estes € G, es, €15 € G.
$:($1$2a0)> @B—_—(wﬁﬁlxz, 0), (&7";):83‘*‘66 €G; e3,e15 € G.
¢=(23,0), ¥=(z22323,0), (6, %) =—es+2e11+e13 € G;
€11,€17 € G.
¢=(3z221,0), P=(222122,0), (¢, %) =—er+ern—ers € G;
€12,€14 € C~¥

In this way all (f,0) € W5 are also in G#. ¢

3. Nilpotent algebras with more than two genera-
tors

In this section we prove our theorem in the general case. We fix
positive integers m and c satisfying the condition m(m — 4) > ¢ — 2.
Since it is sufficient to consider the case ¢ > 3, this implies that m >
> 5. As in Section 2 we consider the automorphisms 47, 82, 63 of the
algebra F' = F,;,(N.) and denote by G = (G Ly, 61, 62, d3) the subgroup
of Aut I generated by GL,, and 4;, j = 1,2,3. We also use the other
conventions from Section 2. For example, if € GN I rAand Y € GN
N I;A, and the values of k and [ are clear from the context, we denote
Ok (¢Ix11A) and 6,(@I;.11A), respectively by ¢ and 9 and by (¢, 1) the
image Og1—1((¢,9)Ix4+1A of the group commutator (¢,7). The main
result of Section 3 is the following.

Theorem 3.1. For m(m —4) >c—2
AlltFm(Nc) =G = <GLm, 51, 52, 53)

We shall prove this theorem by induction on ¢. The base of the
induction ¢ = 3 is considered in Section 1 and we assume that the state-
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ment of Th. 3.1 holds for all algebras F;,,(Ng), k¥ < ¢. Using Cor. 1.5,
we shall establish the case ¥ = ¢. By Cor. 1.9, it is sufficient to show
that the homogeneous component of degree a = (p+¢1,...,p+ €m)
of the GLp,-module W = (F(¢=1))®m coincides with the homogeneous
component of G = 0,_1(GNI,_1A)/(GNI,A), where c — 2 = pm +r,
<r<mande =...=¢g. =1, 601 =... =€, = 0. Till the end
of the section we fix @ and the integers p and r as above. Finally, let
f e F® k<6, and let f depend on z1,z5 only. By the results of
Section 2, the automorphism ¢ of F5(Ny 1) defined by
¢(z1) = 1 + £, ¢(22) = z2,
belongs to the group generated by GLs and d1, 63, 83. If we consider
(GL3, 61, 02,03) € Aut Fp(Ngy1) ,
canonically embedded into Aut Fy,(Ngy1) (fixing the other variables
T3,...,Tm) We obtain that ¢ € G C Aut F,,,(Nyy1).
We start the proof of Th. 3.1 with several lemmas.
Lemma 3.2. Let f = viuvy be a monomial from F(¢=1) such that
degu > 2, degvy + degwvy > 1, u does not contain the variable 1 and
the subwords v and vy of the word f do not contain xy, for some k > 1.
Then (£,0,...,0) € G.
Proof. By 1nduct1ve arguments, there exist automorp]:usms o, v € G
such that _
¢=1(0,...,0,u,0,...,0), ¥ = (vizkVy,0,...,0),
(u is the k-th coordinate of ¢). Then by Lemma 1.12 we compute that
(6,4)=(£,0,...,00€G. ¢

Lemma 3.3. Let f = f(z1,...,2m) € F(e=1) be o monomial of degree

Ai with respect to xz;, where \; > 0 and |A; — X\j| < 2,1<i,5<m. If

Am =1 and A, =0 for some t < m, then (f,0,...,0) € G.

Proof. If f = f(z2,...,%m), then the statement is true by Lemma 3.2.

If f = f(%1,%m), then deg f < 4 and we may work in Aut F3(N.) for

¢ < 5 applying the results of Section 2. Therefore, without loss of

generality we may assume that f depends on x5 and does not depend

on T;,_1. If f contains a subword u = z;z,, or u = Tz, [ > 1, we

apply Lemma 3.2 for £ = m. Hence the only cases to consider are

f =vixmT1v9 and f = viz12,,v2. Let f = viz,21v2 and let
é=1(0,...,0,zpmzy, 0), ¥ = (vViZm—1v2,0,...,0).

We obtain _

(0,9%) = (£,0,...,0) = b1 € G, brp—1 = (0,. .. ,0, T V1 Tpm_103, 0).
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For 0 = (1, m — 1), we define the linear automorphism g, and obtain
do © bm—l = bl = (mmﬁlwlﬁz, O, e ,0),

where z; does not participate in ¥; and 7. Applying Lemma 3.2, it is

sufficient to consider the case by = (T, T122,0,...,0). Let

¢=1(0,...,0,mz1), P = (Zmz2,0,...,0).
Direct calculations show that
(¢,¢) =b1+(0,... ,O,:qunmz) € G,
(0,...,0,22 z5) =g,003€@G, o= (1m) € S,

and (f,0,...,0) € G. The case f = vizi1Tmvy follows applying
Lemma 2.2 to f*. ¢

Now we generalize Lemma 3.3 in the following way.
Lemma 3.4. Let f = f(z1,...,Zm) € F(e=1) pe o monomial of degree
i with respect to x;, where \; > 0 and |A\; — A < 2,1 <4, <m. If
Me =1, k#1, then (£,0,...,0) € G. '
Proof. Without loss of generality we may assume that £ = m. Clearly,
A1 may be equal to 0, 1, 2 or 3 and, by Lemma 3.3 it is sufficient to
consider the case when \; > 0 for alli = 1,... ,m. We consider several
cases.

Case 1. The monomial f is of the form f = viz,zvy or f =
= 11Z;Tmve and [ # 1. Then we apply Lemma 3.2.

Case 2. f is of the form f = ujz]ug, where u; and up do not
depend on z;. Excluding the monomials covered by Case 1 we may
consider the symmetric cases f = z,z]uz and f = u1z]zm,. Since
m > 5, we apply twice Lemma 3.2 in order to obtain consequently

(Tme uz,0,. .. ,0), (1z]Tm,0,...,0) € G, (£,0,...,0) €G.

Case 3. Let f = u12]*upz]*us, where u;, uz and us do not contain
z1. Considering the monomials not covered by the previous cases we
assume that z,, coincides with one of uy,us, uz. For example, let f =
= u12]*TmT] us, the other cases are analogous. Since m > 5 and f
depends on all the variables, degu; + degus > 3. Let some of the
variables x5 or x3 participate in one of the monomials u; and u3 only,
for example o is in u;. If u; = z9, then we apply Lemma 3.2 for z3
and us, because deguz > 1. If deguj > 1, then we apply Lemma 3.2
for 5 and u;. Now, let both z5 and z3 participate in u; and us. Let
Ul = W1, We, i1 € {2,3} and let w; do not contain z3, 3. We consider
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¢ = (0,zows,0,...,0), if 4, =2, and
¢= (O()wgw% .,0), if iy =3,
% = (w125, 27 TmzPus, 0, . ... , 0),
(gb 7,5) (f, ., 0) + (wizy, 2] T 27?43, 0, ... ,0) € G,

where i3 = Aus and A is the derivation of F deﬁned by Az, = x;,w,,
Az; = 0, j # i1. The variable z;, = z2, z3, z;, # z;,, participates in
3 only and we apply Lemma 3.2. In this way, (f,0,...,0) € G.

Case 4. Let f = ujz1usZ1u3T1U4, where x; does not participate
in the monomials u;, ¢ = 1,2,3,4. Since the other possibilities are
covered by the previous considerations, it is sufficient to assume that
T, coincides with some of the monomials u; and the monomials uy, u3
are different from 1. We have to handle two subcases:

(i) u1 = =, (or, by symmetry, ug = z,,), i.e.

f = Tmziusziuszius. Let
¢=1(0,...,0,zmz1), ¥ = (TmU2T1u3T1U4, 0, ... ,0).
We calculate that
(9,%) = (£,0,...,0) = by € G, by, = (0,...,0, 22 2 usT1 Uz 1 U).
By conjugation of b,, by g,, o = (1m) we obtain
b1 = g5 © gm = (T3 T Up T Usm T, 0, . . . , 0)
which belongs to @ by Lemma 3.2.

(i) ug = @, (or uz = zp), ie.

[ = u1Z1ZmT1usT1use, T1 does not participate in the monomials u; and
ug # 1. For

¢ = (212Zm,0,...,0), ¥ = (u1zusz114,0,... ,0)
we obtain

(®,%) = (£,0,...,0)+v eG,

where v is a sum of elements of W con51dered in Case 3. This completes
all the possible cases and gives the proof of the lemma. ¢
Lemma 3.5. Let f = f(z1,...,%m) € F(¢~Y be a monomial of degree
A; with respect to z;, where A; > 0 and l)\ —)\ i1<2,1<4,5<m and
f be presented in the form

[ =woztwiz] ... 2] ws,
where v; > 0,i=1,...,s, w;,1=0,1,...,5s, are monomials which do
not depend on x1 andy; > 0,1 =1,...,s. Let there exist two sets with

the same number of elements
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Ml - {mi]_) s 1$it}7 MZ = {jl) e )jt}
with the following property: In the above presentation of f the variables
z;, € My participate only in the monomials w;, with indices j; from the
set My. Then (f,0,...,0) € G.
Proof. We shall prove the statement by induction of the number ¢ of
the elements of M; and M,. If ¢ = 1, then there exists a variable zy,
k # 1, which participate in one monomial w; only. Then f = vqw;vq,
where vy, vy do not depend on zx. If Ay = deg, f = 1, we apply
Lemma 3.4. If Ay > 1, since degv; + degvy > 1 and degw; > 2, we
apply Lemma 3.2. In this way we complete the case ¢t = 1. Now we
assume that the statement is true for sets M; and M, with less than
t elements and shall prove it for |M;| = |M,| = t. Without loss of
generality we may assume that M; = {zo,...,z;y1}. Let j; be the
smallest index in M; with the property that w;, does depend on some
Ty from M;. Let, for example, £ = 2. If wj, = u1zous and uq,ug do
not involve variables from M;, then the other variables zs,...,Z¢11
participate in the monomials wy,, ... ,w;, and we apply the inductive
arguments for My = {3,... , 2441} and My = {j2,...,5t}. Let wj, =
= U1ToUaT U3, Where x; € M, and ui,us do not depend on elements
£r~om M. We consider
(b = (0,332’11,2.’131, 0, cen ,0), ’(Z - (’LUQ .. ..’szlulxzuig.’r’lyjl-ﬂ oW, 0, RN ,0)

and calculate _
(¢,%) = (f,0,...,0)+ (9,0,...,0) € G,

_ V3 Vig+1
g=wo...oy  urzusA(z{T L ws),

where A is the derivation of F defined by

ACL'Q = IUsTy, sz = 0,’1: # 2.
If we write g as a linear combination of monomials we obtain that each
summand is of the form

— Hi H2 M
gi = 20T 21X7° ... 25-1%7" Zs,
and the variables z3,..., ;11 participate in z;,,...,2;, only. Again,

we apply the inductive assumption and obtain that (g;,0,...,0) € G.
Hence (f,0,...,0) also belongs to G. ¢

Now we are ready to prove Th. 3.1 and, in this way to complete
the proof of the main result of our paper.
Proof of Theorem 3.1. It is sufficient to establish that the homoge-
neous component W€ is contained in G, where o = (p+e1,--- ,D+Em),
c—2=pm+r,0<r<mande;=...=¢, =11 =... =€, =
= 0. First we consider the elements (f,0,...,0) € W*. Asin Ex. 1.2,
deg,, f=p+1,ifr=0and deg, f=p+2,ifr>0. Let
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f=woz]'wi...z]°ws, .

where the w;’s do not depend on z;. The condition m(m —4) > ¢ —
— 2 gives that p < m — 4, i.e. p+ 3 < m — 1. The number of the
words w; does not exceed p +3 < m — 1. Applying Lemma 3.5 for
M, = {zs,... ,Zm}, we obtain that (f,0,...,0) € G. Now, let by =
= (0,...,0,9,0,...,0) € W, where g is the k-th coordinate of by,
k > 1. Clearly, deg, g = o + 1. Conjugating by, with g, for o = (1%),
we obtain that by = g, o by is of the form (f,0,...,0). If g1 = e,
then b; € W<. We have already shown that b, € G , and hence by also
belongs to G. If &1 = 1, e = 0, then the monomial f which is the
first coordinate of b; is of degree ay + 1 = p + 1 with respect to z;.
Again we can apply Lemma 3.5 and obtain that b; € G. This shows
that We C G and completes the proof of the theorem. ¢
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