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Abstract: This is a study of the sufficiency of pure injectives by means of

torsion theory within the category of finitely presented contravariant functors.

~ Some 30 years ago R. B. Warfield established [13] that, over an
arbitrary ring, any module could be embedded purely into an alge-
braically compact (i.e. pure injective) module. This result is known as
‘sufficiency of pure injectives’.

In this paper we seek to further analyze the original result and
generalize to M-purity where M is a collection of finitely presented
modules. Warfield’s result is then the ‘global’ case. The aim is to give
a constructive proof based on ‘local’ cases (when M consists of a single
module). As a consequence we obtain a new proof of Warfield’s result
and some added insight into the structure of M-pure injectives.

The natural context for the problem lies within various torsion
theories in the category of finitely presented contravariant functors
which vanish on projective modules (originally called ‘coherent func-
tors’ by M. Auslander [4]). In particular torsion-torsion free (T.T.F.)
theory plays a prominent role [7].

At a crucial stage of the development a well-known isomorphism
due to M. Auslander [1] is required. Thus an interesting mathematical
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connection is revealed between R. B. Warfield and M. Auslander. This
paper is dedicated to their memory.

After presenting these results at Miskole, July 1996, William
Crawley-Boevey informed me that results concerning M-purity
appeared in the paper ‘On I'-pure injective modules’, R. Kielpiriski,
Bull. de IL’Académie Polonaise des Sciences, Serie des sciences math.
astr. et phys. 15 (1967), 127-131. His approach involves generalizing
the methods of Y. Lo§ and Y. M. Maranda from the abelian group
setting to modules over an arbitrary ring.

1. Background

Throughout this paper, A will denote an arbitrary ring and Mod A
the category of left A-modules. Let M be a set of finitely presented
modules.

A short exact sequence 0 — A — B — C — 0 is called
M-pure (respectively, A — B is a M-pure monomorphism and B —
— C is a M-pure epimorphism) if the natural maps Homa (M, B) —
—+ Homy (M, C) are onto for each M in M. An object N is M-pure
injective if the natural maps Homy (B, N) — Homy (A, N) are onto for
every M-pure monomorphism A — B. Mod A is said to have sufficient
M-pure injectives if for each A in Mod A there exists a M-pure injective
A’ and a M-pure monomorphism A — A’. We will investigate when
Mod A has sufficient M-pure injectives.

Let (T, F) be a torsion theory in an abelian category A. An object
D is called divisible (with respect to (T, F')) if Ext) (T, D) for each T in
T. (T, F) is called localizing if for each A in A there exists a divisible
and torsion free (i.e. in F') object D, along with a morphism A — D
whose kernel and cokernel are torsion (i.e. in 7). Dually one has the
notion of a colocalizing torsion theory. A triple (T, S, R) is a T.T.F.
(torsion-torsion free) theory if the pairs (T, S) and (S, R) are torsion
theories.

For the remainder of the paper A will denote the abelian category
consisting of finitely presented contravariant functors from Mod A to
abelian groups, which vanish on projective modules. To each such func-
tor F in A there is associated a short exact sequence 0 — A — B —
— C — 0, such that F is the cokernel of Homp(—,B) —
— Homp(—,C). In such a way A can be identified with the cat-
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egory of short exact sequences with the subcategory of split short
exact sequences factored out [8]. The injectives of A have the form
Ext} (—,X), [3] [8]. The projectives have the form m(—,X), where
7(Y,X) = Homa(¥.X)/ p(y,x) and P(Y,X) consists of those morphisms
Y to X which factor through a projective module.

Let Sus be the full subcategory of A consisting of those functors
arising from M-pure short exact sequences, equivalently those func-
tors vanishing on M. Define Ry and Ty by H is in Ry, if and
only if Hom4(G,H) = 0 all G in Sy, and F is in Ty if and only if
HOIIlA(F, G) =0all Gin SM

(Th, Su) will be a colocalizing torsion theory in A, and Ty is
generated by the functors 7(—, M), M in M, [7]. We seek to determine
when (Sar, Rar) is a localizing torsion theory.

Regarding M as a full subcategory of Mod A one can form the pro-
jective stabilization of M, i.e. the factor category M/P. The objects of
M/ P are those of M, but Homs/p(M', M) = 7(M/,M). Let Sy be the
restriction functor A — (M/P°P, Ab), so that SyF is the restriction
of F to M/P. Sy is an exact functor with a fully faithful left adjoint
Tar. Thr is the unique right exact extension of the assignment which
sends the representable functor Homps/p(—~, M) to 7(—,M) in A, [7].
We seek to determine when Sjys has a fully faithful right adjoint R p,.

The following variation of the Yoneda Lemma holds for A:
Homy (7(—,X),F) = F(X). Now suppose R = Ry is right adjoint
to S = Sps then RF(X) 2 Homy(n(—, X), RF) 2 Hom¢(S7(—, X), F)
where C is (M/P°P, Ab). Hence, up to natural isomorphism, RF(X)
will be the group of natural transformations from 7 (—, X), as a functor
on M/P, toF. One could then use this as the definition of RF provided
such a definition yielded a finitely presented functor (since it will clearly
vanish on projectives). If one can use this definition then for M in M/P,
SRF(M) = Hom¢(S7(~,M),F) =2 F(M) by the Yoneda Lemma in C,
since then S7(—, M) is just the hom functor. Hence the counit SR —
—> I will be a natural isomorphism and consequently [10] R will be
fully faithful.

2. Results

The three investigations introduced in the background section are
tied together by the following theorem.
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Theorem A. The following are equivalent:

(1) There are sufficient M -pure injectives in Mod A.
(2) The pair (Sar, Ru) is a localizing torsion theory in A.
(3) The functor Spr : A — (M/P°P, Ab) has a right adjoint.

Proof. Since M will be fixed, the subscript M will be omitted through-
out the proof.

(1) = (2) Let F be an element of Aand 0 — A — B —
— C — 0 a short exact sequence yielding F. F embeds in the injec-
tive Ext} (—, A). Let A — A’ be a M-pure monomorphism with A" M-
pure mjectlve Consider the compositional map F —3 Exty(—, A) —
— Ext}(—, A’). The kernel of this map is the functor associated with
the short exact sequence 0 — A — B@® A’ — N — 0 and is clearly
in S since A — A’ is M-pure. The image of this map is in R since it is
a subobject of Ext} (—, A’) (which is clearly in R and R is closed under
subobjects). Hence for each F in A there exists a short exact sequence
in Aoftheform0 — K —F —L-—0withKin §Sand L in
R. Tt follows that (S, R) is a torsion theory in A. Now suppose F is in
R, then F would be zero and hence F embeds in Ext} (—, A’) which is
injective and lies in R. It follow from general torsion theory [6] [8] [11]
[12] that (S, R) is localizing.

(2) = (3) This implication utilizes T.T.F. theory, see [7] for
specific details. :

Assuming (S, R) is a localizing torsion theory then (T, S, R) will be
a T.T.F. theory in A and localization restricted to the full subcategory
T'NR will be the right adjoint to 8': A — T'NR where S’ = r't, with r’
the torsion free functor with respect to (S, R) and t the torsion functor
with respect to (T, S). Furthermore T'NR is equivalent to (M/P°, Ab)
and S will be the composition A — T'N R =2 (M/P°P, Ab). Hence S
has a right adjoint.

(3) = (1) For each A the unit of the adjoint pair (S, R) yields an
exact sequence 0 — K — Ext}(—, A) — RS(Exti(—, A)). Since
the counit is an isomorphism (see background section) it follows from
the triangular identities for adjoints that S converts each unit map to
an isomorphism, and since S is also exact it follows that SK = 0. Thus
K is in S, since S can be regarded as those functors in A which vanish
on M.

Now the ftmctor category (M/Per, Ab) has sufficient injectives,
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hence S(Ext} (—,A)) embeds in some injective E. Since R is a right
adjoint it will be left exact, and since S is exact R will preserve
injectives. Thus one obtains an embedding of RS(Exty(—A)) into
the injective RE of A. But this injective must then have the form
Ext} (—, A’) for some A’. Now any object in the image of R will be in
R, since for F in S, SF = 0 and hence Homy (F, RG) & Homg(SF, G) =
= 0. Thus Ext} (—, A’) is in R and consequently A’ is M-pure injective.
Finally K can be computed as the kernel of Exty (—, A) — Ext} (—, A’)
and hence arises from a short exact sequence of the form 0 — A —
— A'®I — N — 0, where A — I is a monomorphism with I
an injective module. Since K is in S this shows A can be embedded
M-purely into the M-pure injective A’ @ 1. {
Corollary B. There are sufficient M -pure injectives for any collection
M of finitely presented modules.
Proof. Let mod A denote the category of all finitely presented A-
modules. The restriction functor S, factors as successive restrictions
A — (modA/P°P,Ab) — (M/P°P, Ab). Since by Warfield’s result
[13] there are sufficient pure injectives the first restriction has a right
adjoint by the theorem. The second restriction has a right adjoint by a
general result on functor categories [7, Ex. 3.5] [2, Sec. 3]. Hence Sy,
has a right adjoint and the result follows from the theorem. ¢

We will proceed now to establish the sufficiency of M-pure injec-
tives without recourse to Warfield’s ‘global’ result. When M equals
mod A, Warfield’s result is reobtained. When M consists of a single
finite presented module M we will use the terminology M-pure and M-
pure injective. The existence of sufficient M-pure injectives is then a
‘local’ result. The first step is to establish that ‘local’ results can be
patched together. ,
Proposition C. Given a collection M of finitely presented modules,
if there are sufficient M-pure injectives for each M{in M then there are
sufficient M -pure injectives.
Proof. Given any A, let A — Ay be a M-pure monomorphism with
Am a M-pure injective. Consider A — [] Aym. Now Sjs is con-

MeM
tained in Sy so any M-pure injective is alsoE M-pure injective. Then
the product [] Awm of M-pure injectives is again M-pure injective.
MeM
Now A e—) Ay factors via the projection map as A —

— I Ax — Awm, and hence A — [] Ax is M-pure for each
XeM XeM
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M. Thus the functor in A associated to the short exact sequence 0 —

— A — J] Ay — N — 0 will be in Sy for each M. Now
MeM
Sy = nMeM S, so the functor actually lies in Sps and hence A —

— I Awm is M-pure. ¢
MeM :

In considering the local case of a singleton M there will be an
equivalence of categories between (M/P°P, Ab) and ModT' the cate-
gory of right I'-modules where I' = w(M, M) (also denoted frequently
as EndM). This equivalence is given by F — F(M) where F(M) is a
right T-module via z - g = F(g)(z) for z in F(M), g in I'. As indi-
cated in the background section the required right adjoint R (again
suppressing the subscript M) if it exists must satisfy in a natural way
RF(X) = Homg(S7(—, X),F) where again C = (M/P°P, Ab). Passing
to ModT it follows that RN(X) = Homp(w(M, X),N) for N a right
I'-module. Consequently the existence of a right adjoint amounts to es-
tablishing that the functor Homy (7(M, —), N) is in A for any I'-module
N. It will suffice to verify this for injective I'-modules since if 0 —
—3 N —1I; — I, .- is an injective coresolution of N then RN can
be computed in A as the kernel of RI; — RI,. Fortunately this fi-
nal step is established by means of a frequently used isomorphism due
to M. Auslander [1, Prop. 3.3]. Namely for I injective right I'-module
and M a left finitely presented A-module there exists a natural isomor-
phism Homp (7 (M, —),I) & Ext} (—, Homp(TrM,I)) where TrM is the
transpose of M (regarded as an object of M/P where it is uniquely
determined by M). If P, — P; — M — O is exact with P; and
P, finitely generated projectives then TrM can be computed as the
cokernel of Homy (P1,A) — Homy (P2, A).

Remark. The isomorphism results from.combining the isomorphism
w(M,—) = Tori(TrM,—) established by M. Auslander [1, Prop.
3.2] for any ring A, with the isomorphism Homp(Tory (N,—),I) =
& Ext} (—, Homp(N,I)) from [5, VI, Prop. 5.1], which is an extension
of the adjoint relationship between Ny ® — and Homrp (N, —).
Summarizing one has for I an injective I'-module then defining
RI = Ext} (—, Homp(TrM, I)) and extending R to a left exact functor
ModI' — A then R is the right adjoint to S. This establishes the ‘lo-
cal’ result of sufficient M-pure injectives from which the general result
(any M) is obtained by means of Prop. C (and hence also providing a
proof of Warfield’s ‘global’ result). However much more can be obtained
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from this approach.

* From [7, Th. 2.8] the adjoint pair (S, Ra) will induce an equiv-

alence between the injectives in A which lie in Rjs and the injectives of
(M/P°P, Ab). Furthermore Ry is cogenerated by these injectives. In
the ‘local’ case this implies that Rjs can be cogenerated by injectives of
the form Ext} (—, Homp(TrM, I)) where I varies over the injective hulls
of the simple I'-modules. Now if N is M-pure injective then Ext} (—, N)
will be in Rjps and injective in A. Hence this injective will be a direct
summand of some product of the above-mentioned cogenerators, and
thus N will be a direct summand of a product of modules of the form
Homr(TrM, I), and possibly an injective A-module containing N. Com-
bining these results with (the proof of) Prop. C establish the followmg
theorem.
Theorem D. For any collection of finitely presented modules M there
are sufficient M -pure injectives. Furthermore the set of modules of the
form Homp (TrM, I) where I' = w(M, M), I varies over the injective hulls
of simple right G-modules and M varies over M, along with the injective
hulls of simple left A-modules will be a split cogenerating set for M -pure
injectives (i.e. any M -pure injective will be a dzrect summand of some
product of such modules).

We conclude this paper with some remarks concerning simple ob-
jects in A. From [7, Sec. 4] there is a bijection between the simple
objects of A not in Sjs and the simple objects of Ry N Ty (and thus
of the equivalent category (M/P°P, Ab) ).

Suppose then that F is a simple not in Sjs, so that it must be in
Ty N Ry But Ty is generated by the set of projectives m(—, M) as
M varies over M. Hence F will be the epimorph of w(—, M) some M.
For such an M, F will be in Ty and hence not in Sy, and thus in Ry
since it is simple. Consequently F will be in Ry N Ty for some M and
to determine the nature of simples not in S\ one can work locally.

Now Ry is cogenerated by functors of the form
Ext} (—, Homp(TrM, 1)), so a simple object F will embed in one
such functor. Since F is also an epimorph of w(—,M) it fol-
lows that F arises from a short exact sequence of the form 0 —
— Homp(TrM,I) — E — M — 0. Such short exact sequences
are familiar to those working in the representation theory of finite
dimensional algebras. Indeed a short exact sequence 0 — A —»
— B — C — 0 represents a simple object of A if any X — C
which is not a split epimorphism. factors over B for any module X (or
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equivalently any A — Y which is not a split monomorphism factors
through B for any module Y) [9]. Such sequences resemble ‘almost
split short exact sequences’ (also known as ‘AR sequences’ in honor of
the originators M. Auslander and I. Reiten), except that there is no
assumption that A and C are indecomposable (in fact with local endo-
morphism rings) and no restriction for A, B, C, X or Y to be finitely
presented.

Gathering the above results leads to the following theorem.
Theorem E. A simple object of A, which does not come from a M-
pure short exact sequence, will arise from a short exact sequence of the
form 0 — Homp(TrM,I) — E — M — 0, for some M in M,
' = (M, M) and I the injective hull of some simple right I'-module. ¢
Remark. M itself need not have a local endomorphism ring, however
the indecomposable injective I will have a local endomorphism ring.

Furthermore

End4(RI) = Hom4 (RIL RI) & Homp(SRI, I) = Homyp (I, I) = Endg I
Now it is easily verified that
Hom 4 (Ext} (—, A), Ext} (—, B)) = Hom, (A, B)
where Homy(A,B) = Homa(A,B)/I(A,B) and I(A,B) consists
of those morphisms which factor through an injective.  Hence
End, (Homr(TrM, I)) will be a local ring,’

In the ideal case M itself will have a local endomorphism ring, in
which case I is uniquely determined by M and there is only one simple
arising from a short exact sequence with end term M. For rings A in
which every finitely presented module is a direct sum of modules with
local endomorphism rings, then the M’s used in Prop. C, Th. D and
Th. E can be taken to be those of M with local endomorphism rings.
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