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Abstract: We deal with concave mappings F' from an interval I on the real

line into a boundedly complete vector lattice (X, <) such that for a given
0 < € € X the following inequality

AF(z) + (1= ANF(y) I F(Qz+ (1-Ay) 2AF(@) + (1 - AF(y) +e,

holds for all z,y € I and X € [0,1]. We look for affine functions a : I — X
that separate F' and F + ¢ in the sense that F(z) < a(z) < F(z) + ¢ for
all z € I (“sandwich” type theorems). Some of the results are obtained
under an additional assumption that the vector lattice in question is a Banach
lattice. Extension theorems for vector-valued concave mappings as well as
links with the Hyers-Ulam stability problem for affine transformations are

also presented.

1. Introduction

The stability question for convex mappings was first investigated
by D. H. Hyers and S. Ulam [6] in 1952. They have proved that given
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a nonempty open and convex set D C R?, an € > 0 and a function
f D — R such that
FQz+(1-Ny) <Af(z)+ (1= Nf(y) +e,
forall z,y € D and all A € [0, 1] there exists a convex function g : D —»
— R such that
|f(z) —g(z)| <kn-e, z€D,

where k,, is a constant depending exclusively upon the dimension of the
space R™ considered.

In 1984 P. W. Cholewa [3] gave a simpler proof of this result and
considerably improved the constants k,. An interesting generalization
of that stability problem has recently been considered by K. Baron,
J. Matkowski and K. Nikodem in [1]. Some futher authors were involved
but generally their endeavours were concerned with either Jensen ap-
proximate convexity or with infinite dimensional domains. However,
all these stability considerations were concerned with scalar functions
exclusively. In the present paper, we give some results on concave
vector-valued solutions to inequality
(1) FAz+ (1-Ay) 2AF(z) + (1 - A)F(y) +¢,
where z,y run over an interval I C R, A € [0,1] and € is a given ele-
ment of the positive cone in a boundedly complete vector lattice. In
the sequel, solutions of inequality (1) will be referred to as e-convez
mappings. Concave e-convex mappings are then characterized by

0=XF(Az+(1-Ay) - AF(z) - (1-A)F(y) 2,
assumed for all z,y € I and all A € [0,1]. Plainly, such a requirement
is considerably stronger than e-convexity itself. However, our aim will
be now to approximate solutions of the latter inequality by affine ones.
More precisely, we are going to find mappings a satisfying the functional
equation
‘ a(Az+ (1= A)y) = Aa(z) + (1 — Na(y)
for every =,y € I, A € [0,1] and such that

0 <a(z) - F(z) 2 ¢,

for all z € I. Consequently, we deal with Hyers—Ulam stability problem
for affine mappings in the spirit proposed recently by K. Nikodem and
Sz. Wasowicz [9] in the class of real functions of one real variable.

It turns out that the case where the interval I in question is open
and bounded the stability problem just described happens to be the
most delicate one. This forced us to look for possible extensions of
a given vector-valued concave mapping on I onto at least half-closed
interval. Such type results are presented in the final part of Section 3.
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2. Preliminaries

We call the collection of all nonnegative elements in a given vector
lattice the positive cone. A vector lattice X is called boundedly complete
if every nonempty order majorized subset of X has a supremum. A real
Banach space (X, ||-||) is termed a Banach lattice whenever X is a vector
lattice with the partial order < such that

lu| = |v| implies |ju|| < |jvll, u,v € X,
where |u| := sup{u, —u}, u € X. Positive cones in Banach lattices are
closed in the norm topology.

We write X3 for the dual cone in a Banach lattice (X, || -|| %), i.e.
the totality of positive continuous linear real functionals on X. Each
member of the dual space X* can be decomposed into a difference of
two elements of X7 ; in other words: X* = X} — X3. An element z in

a Banach lattice (X, ] - ||, <) is nonnegative if and only if p(z) > 0 for
allp e X3.
The positive cone in a Banach lattice (X, || - ||, =) is said to be

reqular in the sense of M. A. Krasnoselskij (see [7]) provided that each
order increasing sequence of elements from X, order bounded above is
norm convergent. For example, given a real Banach space (X, |- ||), a
vector z € X \ {0} and a number p € (0, ||z||) by setting

C::U{)\CIB(z, 0): x>0},

where B(z, o) stands for the open ball centered at = and having radius
0, we obtain a regular cone in a Banach lattice (X, || - ||, <) with
u=<v ifandonlyif v—uel, wuvelX

Clearly, in that case int C is nonvoid. Moreover, a Banach lattice ob-
tained in that way is boundedly complete because each Banach lattice
with regular positive cone is automatically boundedly complete (cf. H.-
U. Schwarz [11, Chapter II, Propositions 3.2 and 3.3)).

We refer the reader to the book just quoted as well as to the
classical monograph of G. Birkhoff [2] for further notions and facts on
lattice theory.

3. Main results

We begin with a result that provides a description of the ana-
lytic form of a composition of a concave and e-convex mapping with a
member of the dual cone.
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Theorem 1. Let I C R be an interval (bounded or not) and let
(X,||-ll,X) be a Banach lattice. Given an X > € »= 0 assume that
F : I — X is a concave mapping satisfying inequality (1) for all
z,y € I and all A € [0,1]. Then for every member p of X} there exists
an affine function ap : I — R and a convez function vy, : I — [0,1]
such that
poF =ap—vp-ple)
Proof. For every p € X} one has
p(FQAz + (1= N)y)) < Ap(F(z)) + (1 - Np (F(y)) + ple),
z,y € I, A € [0,1]. This means that the superposition po F' : I —
— R satisfies the assumptions of the celebrated Hyers—Ulam stability
theorem [6] (see also P. Cholewa [3] and K. Baron, J. Matkowski and
K. Nikodem [1]). Thus there exists a convex function f, : I — R such
that
(2) p(F(2)) < fp(z) < p(F(z)) +ple), =zyel
In particular, a concave function p o F' is majorized by f, which is
convex. On account of G. Rodé’s result [10, Beispiel (b)] there exists
an affine function a, : I — R such that
p(F(z)) < ap(z) < fp(z), zel
By means of (2) we have also
p(F(2)) < ap(z) < p(F(2)) +p(e), zyel,
which implies the existence of a function 7, : I — [0, 1] such that

ap(z) = (1 = 7p(2)) p (F(2)) + 1(2) [p (F(2)) + p(e)], z € I,

whence
p(e) - vp(z) = ap(z) —p(F(z)), zcl.
Therefore, 7, is convex and
p (F(2)) = ap(z) — 1p(z) -p(e), ze€l. O

From Th. 1 we obtain the following two corollaries:
Corollary 1. Under the assumptions of Th. 1 any concave solution of
inequality (1) on R has to be an affine function, i.e. if F: R — X is
concave and e-convez, then

F(z+ (1—-Ny) =AF(z)+ (1 - A)F(y),

for allz,y € R and all X € [0,1]. )
Proof. It suffices to observe, that each convex function v : R — [0, 1]
is necessarily constant and the dual cone X7 is total. {

A scalar function is called delta-convex provided that it can be
represented as a difference of two convex functions. A function F with
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values in a Banach space X is called weakly delta-convex iff z* o F' is
delta-convex for all z* € X*.
Corollary 2. Under the assumptions of Th. 1 any concave solution
to (1) is weakly delta-convez.
Proof. Take z* € X* and decompose it into a difference p; — p2 of
two members of X}. An appeal to Th. 1 gives the existence of convex
functions vp, : I — [0,1],7 € {1,2}, such that

z* (F(z)) = (ap, (%) + Vp. (z) - P(€)) — (ap, (z) + 1p, (2) - p(€)) , z € L.
Since the functions ap, + Vp, - p(€) and ap, + vp, - p(€) are convex, the
proof has been completed. ¢
Remark 1. Let (X, ||- ||, X) be a Banach lattice with a strong unit (see
e.g. G. Birkhoff [2]). Any concave mapping from an interval I C R
into X 1s automatically continuous in int I.
Proof. Let F : I — X be a concave mapping. Obviously, for every
p € X7, the function po F': I — R is concave and hence continuous in
int I (see, for instance, M. Kuczma [8]). It suffices to apply Th. 2 from
the second author’s paper [4].

In the case where the interval I is a closed subset of R we get the
desired separation effect. The next theorem will show it up.
Theorem 2. Let (X, =) be a vector lattice and let o, B € R,a < 8. If
F: o, B8] — X is a concave function such that inequality

F(z+ (1 —=Ny) 2 AF(z)+ (1= A)F(y) +¢,
is satisfied for some € >= 0 and for all z,y € I, X € [0,1], then an affine
function
¢ : o, B] — X given by the formula
() == %—z—@g(m —a)+ F(a)+e, z¢€lofl],
separates F' and F' + ¢, 1.e.
F(z) X ¢(z) 2 F(z) +¢, z€la,f]

Proof. For every z € [a, 8] there exists a A € [0,1] such that z = Aa+

+(1— \)B. Then
o(a) =9 Ot (1~ 09) = =T 1 - 3)(6— a) + Flo) 4

=AF(a)+ (1= NF(B) +e = F(z) +e
On the other hand, from the equality 1 — A = g—:—g and from inequal-
ity (1) we infer that
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F(z) — F(a) < (1—X) (F(8) - F(a)) +¢ =

@) =22 (r(p) - Fla) +o,
which is equivalent to
F(z) = F——(—’%:—z‘(—@(x —a)+ Fla)+e=d¢(z). O

Inequality (3) in the latter proof leads easily to the following
Remark 2. Assume that I C R is an interval, F : I — X is e-convex
and o,y € I,a < v, are arbitrary. Then for every t € [o,7] the
following inequality is fulfilled: :

Ft) = Fla)  F(y)=Fla) e
t— - Y-« t—«

Now, we shall consider the situation where I = [a, (),a < f <

< oo, or I = (B,a],—0c0 < B < a, for some o € R. We start with the
following two lemmas.
Lemma 1. Let (X, =) be a boundedly complete vector lattice and let
a € R. Let further I stand for a half-open interval (o, B) or (B,0q]
(infinite B admissible). If F : I — X is a concave solution to inequality
(1) then the elements

for te (a,7]

inf ﬂfg@:ﬁe(a,ﬂ)} if I=[a,p)
and
sup{—F—(q;)—:g(;“):xe(,B,a)} if I=(06,q

are well-defined.
Proof. Assume that I = [o, 8) and fix an zg € (@, 3). Then, for any
z € [z9,0) we have z¢ € (o, z] and from Remark 2 applied for v = z
and t = zg we get '

F(z) — F(o) . F(zo) — F(a) €

T— - To — & To—a
Since the space is assumed to be boundedly complete there exists
(4) inf{wzme[xo,ﬂ)}.
r—«
On the other hand, if z € (a,zg), then from the concavity of F' we
obtain the inequality
F(z) = F(a)  F(zo) = Fa)

T — To— ¢

which guarantees that
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(5) inf {M

p— :xe(a,zo]}

does exist. From (4) and (5) it follows that
F(z) - F
a:= inf{—(x)——@ 1T € (a,ﬂ)}.
T—a
exists in X. In the case where I = (8, ] the proof is quite analo-
gous. ¢

Lemma 2. Let the assumptions of Lemma 1 be fulfilled. Then for
every o € I one has

wt {FO=F () e [P T )
if I=le,B);
i [FEZTE g 1 (PO ()

it I=(Bal.

Proof. We shall examine the case where I = [, ) in detail. In the
other case the proof is the same. Fix an z € (a, §) and put

{Ew LT € (a,ﬁ)}

a = inf

and

r—uoa

c::inf{w:me{xo,ﬂ)}.

We have a < c¢. Clearly,
F(z)-F
c < %Cﬁ for all z € [zo, ),
whereas for = € (a, o] the concavity of F' gives
¢ < F(zo) — F(a) < F(z) — F(a).
To— T—a
Thus ¢ < a, which completes the proof. ¢
With the aid of these two lemmas we shall prove the following
Theorem 3. Given a real number o, a boundedly complete vector
lattice (X, =) and a vector € = 0 from X, let I stand for the interval
e, B) or (B,¢] (infinite B admissible). If F : I — X is a concave
solution to (1), then there exists a vector a € X such that
F(z) Ra(z—a)+ F(a) + & 2 F(z) +¢,

forallz eI.
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Proof. Assume that I = [a, ). Lemma 1 implies that
a:= inf{F—(m—)—_—F(al T € (a,,@)}
T —«
does exist in X. Hence, for every z € [a, ) we get
(6) F(z) = a(z — a) + F(a).
Take an z € (o, 8) and a y € [z, 3). From Remark 2 applied for v =y
and t = z we deduce that :

F(z) — F(a) < Fly) —Fle) | e ;
T —a y— o T -«
therefore,
T—a Y— o T—a
Now, Lemma 2 implies that
F(z) — F(a) <Za+ '
T -« T—a

In other words
F(z) Ra(z — o)+ F(o) +e¢

for every = € [o, ), which jointly with (6) finishes the proof, because
the case where I = (8, a] can be handled in much the same way.

Surprisingly, the most sophisticated is the case where the interval
considered is a bounded and open subset of real line. To proceed we
begin with the following
Lemma 3. Let I = (o,8),a,0,€ Ria < B, and let (X =) be a
boundedly complete vector lattice. If F : (o, B8) — X 1s a concave
solution of inequality (1), then for every zo € (a, B) the elements

a~ (z0) —sup{M ' T € (a,wo)}

T — Tg
b~ (zo) := inf {E(%}%(@ 1T € (a,xo)}
a™(zq) :=sup {—FLHUQ);—:—&CF—O(IE—O)* (T € (mo,ﬂ)}

F(z) — F(=o)
T — X

bt (zo) := inf { ‘T € (mo,ﬂ)}

are correctly defined.

Proof. Fix arbitrary zo,yo and n such that a < zp < yo < ( and
n € (0,zo — yo) and take an z € (o, zo). There exists a y € (@, z) such
that zo —y 2 7.
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Weget a<y<z<zg<yp<p From the Conéavity of F' we obtain
the following inequalities:

() F(yo) — F(zo) < F(z) — F(zo) < F(y)—F(wo)'
Yo — ZTo T —Tp Yy—To
We shall show that
F(y)— F F —F -
(8) (v) (zo) < (o) (zo) n B—a .
Y — o Yo — To n(yo — Zo)
Indeed, since
Tg = 40 _x0y+ 20 _yyo,

Yo—Uy Yo—Y
inequality (1) applied for A := 2=2 € (0,1) leads to

Flao) 3 52 F(y) + = F(yo) +e.
Yo— U Yo —
Multiplying both sides of the latter mequahty by £2=¥. —— and taking

To—Y Yo—To
into account that

yo-y 1 _ _fB-o

To— Yy —zo ~ N(¥o — To)
we arrive at (8). Now, inequalities (7) and (8) imply that

F(yo) — F(zo) =< F(z) — F(zo) =< F(yo) — F(zo) 4 p—a
Yo — Zo - T — To - Yo — Zo n(yo — o)

This clearly forces the existence of the elements a™ (zo) and b~ (zo). In
the remaining cases the proof is literally the same. ¢
Corollary 4. If (X,]| |, ) is a boundedly complete Banach lattice,
a,BeR a< B, and F: (a,B8) = X is a concave solution of inequality
(1), then F is continuous.
Proof. Let zo € (@, 3) be fixed. From Lemma 3 we infer that

€.

b~ (zo) X F—(iljzc):—f(-@ <a (zo) forall z € (a,zo)
and ’
bt (zo) =X —FLz:_f—wgl < at(zg) forall z € (zo,0).
Put °
c(zo) = sup{a™ (zo), b~ (z0)}
and

d(zo) == sup{a*(zo), —b" (z0)}-
Since we have

F(z) — F(zo)

r — Tg

< c(xg) = |e(zg)] for all z € (a,zo)

and
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'F(x) :F(xo)

the estimations
|F(z) — F(zo)|l < |z — wollle(zo)ll, = € (o, z0),

|1F(z) — F(zo)|l < |z — mollld(zo)ll, z € (0, ),
follow. Consequently, we get
lim F(z) = F(zo)

T—rxo

= d(wo) = |d(zo)| forall z¢€ (1:07,3);

and

which is our claim. ¢

The following theorem concerns the situation where the domain
of a vector-valued map considered is an open and bounded subinterval
of the real line.
Theorem 4. Given real numbers o, f,a < [, a boundedly complete
vector lattice (X, <) and a vectore = 0 from X, if F: (o, ) — X is a
concave solution of inequality (1), then for every zg € (o, B) there exists
a hat-function @g, : (o, ) — R with the verter at (zo, F(zo) +€) such

that
F(z) 2 @uo(z) 2 F(z)+6, z€(f).
The function @z, is of the form
(z) = { a”(zo)(z — zo) + Fzo) +¢, i z € (o, zo,

Pmolt) = bt (zo)(z — zo) + F(z0) + &, if z € (zo,p).
Proof. Fix arbitrarily an zg € (o, §) and observe, that the concavity
of F' forces the function

F(z) — F(zo)

pla) = = & (o)

to be decreasing, i.e. if u < v then ¢(u) > ¢(v). Hence

sup{p(t) : t € (o, u]} = sup{p(t) : ¢ € (o, v]}.
Take z € (a,zo] and u € (a,z). There exists a A € (0,1) such that
£ = Au+ (1 — A)zo. From inequality (1) applied for A = £=2% we get
‘ F F
F(z) R AF(u)+ (1 =N F(zg) +e= _‘(’%jz(—m

Hence
F(x)jsup{———u—————@( —~x0) : u € (a, m)}+F($o)+e

(9) :Sup{w(x—x a:co}

uUu—=xo

(z —z0) + F(z0) +&.

\ =a (55'0)(-'1: - 1130) + F(.’I)o) + €.
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F(z) — F(zo)

a” (zg) =
r — T

we have
F(z) = a™(zo)(z — o) + F(zo) for =z € (a,z0),
which jointly with (9) implies that
F(z) 2 a™ (zo)(z — 20) + F(zo) +e R F(z) +e for z € (o, o).
The monotonicity of ¢ gives
inf{p(t) : t € [u, B)} = inf{p(t) : t € [v,6)}
provided that v < v. Let z € [zo,0) and u € (z,3). Along the same
lines we show that

F(u)—F
F(.’L‘) = —@—3——#@,‘ - 1170) —I—F(IE()) + g,
— o
whence by LLemma 3 we arrive at:
(10)
( ) F(u)—F
F(z) <inf {—(u—i——;@(m —Zp):u€ (m,,@)} + F(zg) +¢
— To
. F(u)—F
) :mf{—-@——io)(x—xo):ue[mo,,@)}+F(mo)+s
U — o
\ =b"(zo)(z — x0) + F(zo) +&.
Now, in view of the obvious inequality
M > b (z0),
Ir — X

we infer that
F(z) = b"(x)(z — z0) + F(zg) for =z € [z0,0).
From this inequality by means of (10) we obtain
F(z) +¢e > b (zo)(x — zo) + F(zg) +€ = F(z) for =z € [z0,0).

and the proof has been completed. ¢

We terminate this paper with stating some sufficient conditions
for the existence of a continuous extension of a concave function on an
open interval to a concave function on its closure. If that is the case
then, in particular, we may apply separation theorems obtained earlier
and to have an affine separating function on an open interval instead
of hat-functions occurring in Th. 4. We also believe that such type
extension results may present an interest of its own.

In what follows, by the graph of a function F' : (a,8) — X we
mean the curve

grF:={(z,F(z)) e Rx X :z € (a, )}

whereas the symbol | gr F| stands for the length of that curve (if it is
rectifiable).
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Theorem 5. Given real numbers a,B8,a < [, a Banach lattice
(X, |- 1I, =) and a concave map F : (o, B) — X, if either

(a) gr F' is rectifiable
or

(b) gr F' is precompact in R X X
or

(¢) F is order bounded below and the positive cone in X is regular,
then there exists a continuous extension of F' to a concave mapping on
e, B].
Proof. (a). We shall show that there exists a continuous extension of
F onto the interval (o, ] (the proof of the existence of a continuous
extension of F' onto the interval [, §) is entirely analogous). First, we
shall show that for every 5 > 0 there exists a § € (0, 3) such that

|F(s)— Ft)|| <n forevery s,t€(8-34,p).
Suppose the contrary: there exists an no > 0 such that for every 0 €
€ (0,8 — @) one may find s,t € (8 — 4, 8) such that inequality
|1F'(s) = F(@)] = mo

holds true. Fix arbitrarily an M > 0 and take a number N € N such
that Nng > M. Let ap = ﬁ—?'i There exist s1,%1 such that agp < 51 <
< t1 < B and ||F(s1) — F(t1)|| > mo. Proceeding similarly, we may find
clements sy < to in the interval (¢1, 8) such that [|F(s2) — F(t2)|| > no-
By induction, we derive the existence of sequences (sn)nen and (tn)nen
such that ag < 8p < tn < Snp1 < tn1 < B and [[F(sn) — F{t)|l = no
for all n € N. Hence, for every N > m > N one has

| &7(Fl{ag tm])| 2 Z (3, F(2:)) — (83, F(sa))ll =

= Z V(i — )2 + || F(t:) — F(s)ll? >

N
> Z |F(t;) — F(s;)|| > Nmo > M.

On the other hand
00 > | g8(Flag,0))| = 5D {| 81(Fl{a0,801)] : Bo € (0, B)}
> sup {| g1(Fl{ao,tm])] : ™ > N} >M.
Since M > 0 was quite arbitrary this contradicts assumption (a). So,
in view of the metric completeness of the Banach space considered,
we conclude that F has a limit at the right endpoint of its domain
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and, consequently, that F' admits a continuous extension onto (c, f].
Obviously, that extension yields a concave mapping.

(b). We give the proof only for the extension onto the right end-
point of the interval (a, §). Since there exists an M > 0 such that

clgr F C [o, 8] x cl B(0, M),
we infer that
F(t) € c1B(0,M) forall t¢€ (a,p).

We shall first show that
(11) clgr F N ({8} x cl B(0, M)) # 0.

Indeed, otherwise, since clgr F' is compact, cl B(0, M) is closed and,
obviously, both sets are nonempty, the distance

n := dist (clgr F, {8} x cl B(0, M))
Would be positive. This contradicts (11) because, taking a t € (a, f)
such that ¢ + 1 > f, one has (¢, F(t)) € clgr F and (B, F(t)) € {8} X
x cl B(0, M), yielding

1@ F@)— B, FO)I =1t =Bl <m,
which violates the definition of 7.

Now, we are going to prove that the intersection spoken of in (11)

is a singleton. Suppose the contrary: there exist y # z such that

(8,9),(B,z) Eclgr P and  (B,y), (B,2) € cl B(0, M).
Since the dual cone X * distinguishes points of X there exists a mem-

ber p of X, * such that p(y) # p(z). Without loss of generality we
may assume that p(y) > p(z). Clearly, there exist sequences (Br)nen,
(ﬂn)nel\h ,B'n. < 181 ,Bn < :8 such that
Tim (B, F(B)) = (B,9), Jim (B P(B)) = (8.2)
and _
lim p(F(Ba)) =p(y), lim p(F(B,))=p(2)
Let n > 0 be such that

(12) (p(y) — 1 p(y) +n) N (p(2) — 1, p(2) + 1) =
Choose elements ﬁnl, ,Bna € {Bn:n €N} and B, € {ﬁn n € N} such

that B, < ﬂnz < Bn, and
p(F(Bn,)) € (p(y) —n,p(y) + 1),
p(F(B,,)) € (p(2) —n,p(2) +m),
p(F(Bns)) € (p (y)—n',p( )+m).

From the concavity of po F' we deduce that for
/8 ne 16713

A= ﬁnl - :an

we have
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(p(2) = n,p(2) +1) 3 p (F(Bn,)) =0 (F(An, + (1= A)Bn,)) >

2 A (F(fn;) + (1= N)p (F(Bny)) € (py) —n,p(y) + 1),
which contradicts (12). Thus, there exits an element g € X such that

clgr F'N ({8} x c1.B(0, M)) = {(8, 9)}-
It remains to put
Flz) = { F(z) for zé€ (a,p)
g  for z=0
to get a continuous extension F' of F' onto the interval (e, B]. Plainly,
F is concave.

(c). Again, we shall confine ourselves to the right endpoint of the
domain. Assume that there exists an m such that F'(z) > m for z from
a neighbourhood [y, ) C (a, ) of # . Then the difference F' —m is a
concave solution of inequality (1) and F(z) —m > 0 for all z € [y, f).
Therefore, without loss of generality, we may assume that F' itself is
nonnegative in [, ).

Now, fix arbitrarily points s,t € (v,8),s < t. By means of the
concavity of F' we obtain

F(t) = F(s) _ F(s) = F(7)
t—s — s—7
Setting A := 3= we get further
AF(t) — AF(s) 2 F(s) — F(v) =2 F(s),

1.e.

s— A
= — < F
IR = 50 S F )
which states that the map
F(s)
(13) (16)35 — — e X

is monotonically decreasing.
Fix arbitrarily a strictly increasing sequence (Z,)neny with ele-

ments in (v, ) and such that =, — § as n — oco. Then (E—(:—”“—)) o

T~
is a decreasing sequence of nonnegative elements of X. On account of
the (assumed) regularity of the positive cone in X, such a sequence is
convergent in norm. Let

lim £(Zn)

n—00 Ty — Y
Observe that b does not depend upon the choice of (z,,)nen. Actually,
assume that (T, )nen is another strictly increasing sequence of elements

= be X.
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from (v, 8), converging to 8. Then b := lim,_,, g(ﬁi",y) is well defined.
Suppose that b # b and put "

Y1:=1T1, Y2 =1Tp,
where 7y := min{n € N: T, > 21}, y3 = z,,, where ny := min{n €
€ N:z, > Ty, }, and s0 on. A sequence (y,)nen constructed in that

way is strictly increasing and tends to 3, which implies the convergence

of the sequence (F—S’ﬂ—)) N in X. Obviously, this is impossible be-
ne

n

cause such a sequence contains two subsequences tending to b and b,
respectively.

Consequently, function (13) has a limit b € X at the point 8,
which implies that F itself has a limit at 3 (equal to (8 — +)b) and
finishes the proof. ¢
Remark 3. As a matter of fact, the proof above (point (c)) gives more,
namely (under the assumption that the positive cone in X is regular)
we have:

(a) if F' is concave and bounded below in a neighbourhood of B,
then F' is continuously ertendable to a concave map on (a, B);

(b) if F' is concave and bounded below in a neighbourhood of c,
then F' is continuously extendable to a concave map on [a, B).
Proposition 1. Let (X, <) be a vector lattice and let « € R and B €
€ RU {oo} be given such that @ < B. If F : (o, ) — X is an e-convex
function for some € > 0, admitting at least two comparable values, then
F is order bounded below in a neighbourhood of o.

Proof. Let zg,y0 € (a, 8),zo # yo, be such that F(zg) and F(yp) are
comparable. Without loss of generality we may assume that F'(zg) <
= F(yo). Suppose that zy < yo and choose arbitrarily an = € (q, zq).
Then there exists a A(z) € (0,1] such that zo = Az)z + (1 — A(z))yo
whence

F(zo) 2 AM@)F(2) + (1 - X=))F(yo) +¢
or, equivalently,

a := F(zo) — F(yo) — € 2 AMz)[F(z) — F(yo)]-
Consequently, because of F'(zg) — F(yo) =< 0 < &, we infer that a < 0
and

Yo— &

” _xoa-l—F(yo) = )
Since, evidently, m does not depend upon z, we deduce that the re-
striction F'|(4 4] is bounded below by m.

a+ F(yo) = F(a).

m =
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Suppose now that yy < zo and choose arbitrarily an z € (a, yol.
Then there exists a A(z) € (0,1] such that yo = A(z)z + (1 — A(z))zo
whence

F(yo) 2 Az)F(z) + (1 — A=) F (o) +¢
which implies that
—& + A(z)F(z0) % F(m0) — Fyo) — & + Mz)F(z) < A(z)F (),
ie.
1 Ig— T Tg— Q& .
F(z) »= F(zo) )\(:1:)6 = F(zo) + Yo — a:OE = F(zo) + — iL‘oE =: m,
which states that the restriction F'|(4 g, is bounded below by m and
finishes the proof. ¢

As a corollary, we get easily the following

Theorem 6. Let (X, || - ||, <) be a Banach lattice and let o, B € R, <
< B, be given. If the positive cone in X is regular and F : (o, ) = X is
a concave and e-convexr map admitting at least two comparable values,
then there exists an affine function a : (o, B) — X that separates F' and
F+e.
Proof. In view of Prop. 1, F is order bounded below in a neighbourhood
of a. An appeal to Th. 5 assures that F' admits a continuous extension
to a map F' : [a,3) — X which, obviously, is both concave and e-
convex. To finish the proof it remains to apply Th. 3 for the extended
map F. Q

The local boundedness below at the left endpoint of the domain
played here the crucial role. In the next proposition we shall derive
that property of e-convex mappings on bounded open interval from an
additional assumption upon the positive cone in the target space.
Proposition 2. Let (X,| -]||,X) be a Banach lattice and let o, €
€ R, a < B, be given. If € is an inner point of the positive cone (in the
sense of norm topology) and F : (o, ) — X is a continuous e-conver
mapping, then F is locally order bounded below at c.

Proof. Write C := {u € X : u = 0} and fix arbitrarily an zo € (o, 8).
Since, by assumption, € € int C, the set ¢ — C yields a neighbourhood
of zero. Thus, by continuity, we may find a § > 0 such that (zo —
— 8,20 +98) C (a,B) and F ((zo — , 20 + 6)) C F(xo) +e&— C. Take a
Yo € (xo, To + 8); then a := F(yo) — F(zo) —e = 0. Now, for every z €
€ (o, %) one has g = A(z)z + (1 — A(z))yo with A(z) := =22 € (0,1)
and A(z) > =22 =: Xg € (0, 1). On the other hand,

F(zo) 2 A(z)F(z) + (1 - M) F(yo) + &, 2 € (@, %o),

whence
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1
)\_oa < )\(1 )a = F(z) — F(yo), z€ (a,7],

which means that F|(, 4 is order bounded below by F(yo) + —a and
completes the proof. ¢

Applying Prop. 2 instead of Prop. 1 and recalling that a concave
mapping on an open interval is continuous (see Cor. 4 ) we obtain the
following
Theorem 7. Let (X,|| -], X) be a Banach lattice and let o, f € R, <
< B, be given. If the positive cone C C X is regular and if F : (o, B) —
— X 15 a concave and e-conver mapping with € € int C, then there
exists an affine function o : (a, 8) — X that separates F' and F + €.

4. Two examples

In connection with Th. 6 it seems worthy to observe that for every
Banach space (X, || - ||) of dimension at least two and any nondegenerate
interval I C R one may construct a regular cone C C X and a concave
map F : I — X being e-convex for each ¢ € C such that none of
two different values of F' are comparable. Actually, fix arbitrarily two
linearly independent vectors ¢, d from X and put

F(z):=xzc, zel, C:={X:X>0}
Clearly, F' is both concave and convex (and hence e-convex for every € €
€ C) but for each pair (z,y) of distinct elements from the interval I one
has F(z) — F(y) = (z — y)c ¢ C. The cone C itself is regular because
given an increasing sequence (u,)nen Of elements of X majorized by
an m € X we derive easily the existence of a sequence (A,)nen of
nonnegative reals such that
Upt1 =1+ (A +--+Ap)c forall neN
Since we have also m — u,y1 € C for all n € N, we infer that

n
m—u, = (an-i—Z)\k)c forall neN,

k=1
with some nonnegative a,’s. Now, for every n € N, we get

m u

which proves that the series (3 p_; )\k)n cn 18 convergent. Consequently,
the sequence (u,)nen tends (in norm) to uy + (3 poy Ak) C.
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Our next example shows that the regularity assumption upon the
positive cone in Th. 6 is not a necessary condition for the separation
effect desired. To visualize it, consider a Banach lattice C([0,1], R)
of all continuous real functions on [0, 1] with the uniform convergence
norm and the natural (pointwise) ordering relation. The positive cone
P here has nonempty interior (each member of C([0, 1], R) with positive
absolute minimum is an inner point) but that lattice is not boundedly
complete (see e.g. H.—U. Schwarz [11]); in particular, P is not regular.
Nevertheless, a map F': (0,1) — C([0, 1], R) given by the formula

F(z)(s) ==2°, z€(0,1),s€]0,1],
which is concave and e-convex with

1 for s=0
g(s):={ sTos —sT5 for se€ (0,1)
0 for s=1

admits an affine transformation that separates F' and F + ¢; namely a
map a : (0,1) — C([0,1],R) given by the formula a(z) := z + ¢,z €
€ (0,1), will do (obvious). We omit the detailed quite elementary
calculations showing the concavity and e-convexity of F' and the fact
that our choice of ¢ is sharp in the sense that it is the smallest possible
continuous function on [0, 1] among the totality of functions § € P for
which F' is d-convex.

5. Concluding remarks

Note that each concave function F' from a bounded real interval
I C R into R® (understood as Banach lattice with the order relation
=< generated by the cone C' consisting of vectors having all coordinates
nonnegative), admitting a continuous extension onto the closure of I,
is automatically e-convex with some € € C. In fact, let F': cl] — R®
be a continuous extension of a concave mapping F' : I — R™ onto the
closure of I. Put K := clI x clI x [0,1] and define a transformation
T = (Ty,...,T,) : K — R™ with the aid of the formula

T(z,y,A) = F Az + (1~ \)y) — AF(2) — (1 — N F(y),
for z,y € clI and A € [0,1]. Since all the T;’s are continuous on a
compact domain, for each i € {1,...,n} we have
pi = sup {T;(z,y,A) : (z,y,A) € K} < oco.

Setting &; := max(0, u;),7 € {1,...,n}, one can easily check that F,
and hence also F' itself, is e-convex with € := (e1,...,&,) € C.
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More generally, each concave function F from a bounded real in-
terval I C R into a Banach lattice (X, || - ||, <) with a strong unit, ad-
mitting a continuous extension onto the closure of I, is e-convex with
some nonnegative €. Actually, F' is continuous in int I (cf. Remark 1)
and if F : c1I — X stands for a continuous extension of F' onto clI,
then T'(K') is compact and a fortiori norm bounded in X. In a Banach
lattice with a strong unit each norm bounded set is also order bounded
(see G. Birkhoff [2, p. 472]).

Any affine map a from a nondegenerate interval I C R into a real
Banach space (X, || - ||) is of the form

a(z)=z-c+d, zel,
where c, d are some fixed vectors from X. Indeed, obviously, a satisfies
the Jensen functional equation

o(21Y) - 22

2 2 ’
and a is norm bounded on each compact subinterval [, 8] of the interval
I, because for every z € o, f] there exists a A € [0,1] with z = Aa +
+ (1 — A\)S8 whence

la(@)[| = [[Aa(a) + (1 = Na(B)|| < max (|a(@)], la(B)])) -

Therefore, in view of [5, Th. 1], there exists an additive map A : R — X
and a vector d € X such that a(z) = A(z) +d,z € I. Clearly, Alja,pg) 18
norm bounded and hence continuous. In particular, A is linear whence

Alz)=z- A1), zeR,
and it remains to put ¢ := A(1).

The sandwich type theorems presented in the present paper may
also be viewed as (partial) generalizations of the stability result for
affine functions established by K. Nikodem and Sz. Wasowicz [9] in the
class of real functions on a real interval I. They have proved that any
function f : I — R satisfying the inequality

If Az + (1 =XNy) = Af(z) - (1-NfW) <e, zyel,xel0,1]
differs from an affine function by at most %—s in absolute value. Our
results concern the case where a given map F from I into a vector
(resp. Banach) lattice X satisfies the inequality
0= F(Az+ (1-Ny)—AF(z)— (1-NF(y) <e, =z,yel,Ae]0,1],
which implies both

|[F'(Az + (1= AN)y) = AF(z) — (1= AN)F(y)| 2e, z,yel,Ac]0,1],
and

z,y €I,
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IF Az + (1= Ny) = AF(z) = L= NF@) < [lell, =y el,Ae[0,1]
(the latter one in the Banach lattice case). Our claim is that then
(under suitable assumptions trivially satisfied in the real case) there
exist vectors ¢,d € X such that
0<=z-c+d—F(z)<e forall z€l,
which in turn implies that
lz-c+d—F(z)| e forall ze€l,

and
lz-c+d—F(z)|| < |le] forall zel

(the latter one in the Banach lattice case). However, the result of
K. Nikodem and Sz. Wasowicz is not covered completely because we
were dealing with concave mappings and they were admitting e-concave
ones. Nevertheless, a thorough inspection of the proofs shows that in
some cases (which we do not enumerate here explicitly) such an im-
provement of our statements is possible without essential proof changes.
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