Mathematica Pannonica
8/1 (1997), 17-36

TREE MARTINGALES AND A.E.
CONVERGENCE OF VILENKIN-
FOURIER SERIES

Ferenc Schipp

Department of Numerical Analysis, Eétvés L. University, H-1088
Budapest, Mizeum krt. 6-8, Hungary

Ferenc Welisz

Department of Numerical Analysis, Edtvos L. University, H-1088
Budapest, Mizeum krt. 6-8, Hungary

Dedicated to Prof. Gyula Maurer on his 70-th birthday

Received: December 1996
MSC 1991: 42 C 10, 43 A 75; 60 G 48
Keywords: Tree martingales, atomic decomposition, Vilenkin systems.

Abstract: Using martingale theory we give a new and simple proof of Car-
leson’s theorem for Vilenkin—Fourier series. An atomic decomposition of
spaces containing tree martingales is formulated. With the help of this a
sufficient condition for the weak boundedness of an operator on the tree mar-
tingale spaces is given. Weak and strong type (p, p) inequalities are proved for
the martingale transform and for the quadratic variations. Since the partial
sums of a Vilenkin—Fourier series are a special martingale transform, we ob-
tain that the supremum of the partial sums is of weak type (p,p) (1 < p < o00),
whenever the Vilenkin system is bounded. This implies the a.e. convergence
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1. Introduction

In 1966 Carleson [4] proved his famous and very deep theorem:
the trigonometric-Fourier series of a function f € Ly converges a.e. to
the function f. Hunt [8] extended this theorem for all f € L, (1 <p <
< 00). This result for the Walsh system was proved by Billard [1] for
p = 2 and by Sjolin [16] for 1 < p < oo while for bounded Vilenkin
systems by Gosselin [7] (see also Schipp [12], [13]; p = 2).

Using martingale theory we give a new and simple proof of this
last result, i.e. for bounded Vilenkin systems. We introduce tree mar-
tingales and tree martingale difference sequences. Note that not every
tree martingale difference sequence define a martingale. An atomic de-
composition of Hardy spaces consisting of tree martingale difference
sequences is formulated. With the help of this we shall prove that,
for the boundedness of a sublinear operator from the tree martingale
Hardy spaces to the weak L, spaces, it is enough to check the oper-
ators on atoms. Some one-parameter martingale inequalities given in
Section 2 are extended to tree martingales. A maximal inequality as
well as Burkholder-Gundy inequality are verified. Moreover, it will be
shown that the L, norm of the conditional quadratic variation and of
the maximal function of a martingale transform can be estimated by
the L, norm of the martingale in case the stochastic basis is regular.

The partial sums of the Vilenkin-Fourier series of an integrable
function can be majorized by the maximal function of a suitable mar-
tingale transform. As a consequence we obtain that the supremum of
the partial sums is of weak and strong type (p,p) (1 < p < c0), when-
ever the Vilenkin system is bounded. A usual density argument implies
then Carleson’s theorem for Vilenkin-Fourier series. Finally, we verify
that, for an arbitrary Vilenkin system and for f € L, (1 < p < 00), the
Vilenkin—Fourier series of f converges to f in L, norm. This result was
shown by Schipp [11] and by Young [20].

2. One-parameter martingales

In this section we summarize shortly all results on one-parameter
martingales, which will be used or extended later. Let (£,.4, P) be
a probability space and let F = (F,,n € N) be a sequence of non-
decreasing o-algebras. The c-algebra generated by an arbitrary set
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system H will be denoted by o(#H). Suppose that o(UpenFn) = A.
The expectation operator and the conditional expectation oper-
ators relative to F, (n € N) are denoted by E and E,, respectively.
We briefly write L,, instead of the complex L,(2, A, P) space while the
norm (or quasinorm) of this space is defined by |||, := (E|f[P)*/.
An integrable sequence f = (fn,n € N) is said to be a martingale
if
(i) it is adapted, i.e. f, is F, measurable for alln € N
(ii) Epfm = fn for alln < m.

The mazimal function and the martingale differences of a mar-
tingale f = (fn,n € N) are denoted by

f* = Sue%‘fmla dnf = fn+1 — fn (n z 1)a dO.f = fO-

It is easy to show that (d, f) is an integrable sequence, dy, f is Fpn41
measurable (n € N) and E,d,, f = 0. Conversely, if a function sequence
(d,) has these three properties then (fn,n € N) is a martingale where
Fn =300 dy.

We say that a martingale f = (fn,n € N) is predictable in L,
(0 < p < 00) if there exists a sequence 0 < Ag < Ap < ... of functions
such that A\, is F,,—1 measurable and

‘fnl < Ans Aco 1= SUP Ap ELP.
neN

We introduce the martingale Hardy spaces for 0 < p < oo; denote by
H, (resp. Pp) the space of martingales (resp. predictable martingales)

for which
1l e, = N7, < o0

(resp.

, | fllp, »= inf | Acolp

where the infimum is taken over all predictable sequences (A,,n € N)
having the above property).

It is known (see Weisz [18]) that H,, is equivalent to P, (0 < p <
< o0), if the stochastic basis is regular, i.e. if there exists a number
R > 0 such that for all f € L

|Bnf| < REn_1|Enf] (n€N).

As we can see later the atomic decomposition is a useful character-
ization of Hardy spaces. Let us introduce first the concept of an atom:
a measurable function a is a p-atom if there exists a non-increasing
sequence (A,,n € N) of adapted sets such that
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(i) (Ena)la, , =0 (neN),
(i) lla*|loo < PURoAS)~/P

where A_; :=  and A€ denotes the complement of the set A.

Note that the ofiginal definition of p-atoms is formulated by using
stopping times, however, it is easy to see that the two definitions are
equivalent.

Observe that (i) is equivalent to
(i) dnaly, =0 (n€N).

The basic result of atomic decomposition states that, if the mar-
tingale f = (fn;n € N) isin P, (0 < p < co) then there exist a sequence

(a¥, k € Z) of p-atoms and a sequence (u, k € Z) of real numbers such
that for all n € N '

o0 oo /
S mBaat =g ad (Y 1mP)" < Glifllp,.

k=—o00 k=-—o0
The following martingale inequalities are basic theorems in the
martingale theory and are due to Doob (see Neveu [10]) and to Burk-
holder, Davis and Gundy [3], [5]:

o 17 <157l < SE5 17l (1 <p<oo),

o0 1/2
@ el < I X 1) o < GollFlly (1< p < o00).
n=0 .

) It was verified by Burkholder [2] (see also Weisz [19]) that
3

i 1/2
1#71lp < Coll (3 Baldnf*) "l + Cpllsupldnfill,  (2<p <o)
n=0 n

Note that the converse of this inequality is also true (see Weisz [19]).

We will also use the next convexity and concavity theorem: if
(frn,n € N) is a sequence of non-negative measurable functions then we
have

(4) E[(iEnfn)p] < C',,E[(f:fn)p] (1<p <o)

n=0 n=0

and
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(5) E[(Z%fn)p] SCpE[(iEnfn)p] 0<p<1).

Note that the positive constants C, depend only on p and may
denote different constants in different contexts.

3. Tree martingales and Hardy spaces

Let T be a countable, upward directed index set with respect to
the partial ordering < satisfying the following two conditions: for every
teT

T ={ueT:u<t}
is finite and the set

Tt::{UET:tSU}
is linearly ordered. Thus T is a tree and every non-empty subset of
T has at least one minimum element. Denote by Ty the set of the
minimum elements of T.

Let (£2,.A, P) be a probability space and let us fix a non-decreasing
sequence F = (F;,t € T) of sub-o-algebras of A with respect to the
partial ordering. Assume that (F;, ¢ € T) can be ordered linearly and
A = o(UsetF). Denote again by E; the conditional expectation oper-
ator with respect to F;.

In the tree case it is more useful to work with projections instead
of the conditional expectation operators. We consider the projections

(6) P.f == ¢:E(fdy)  (f € L1,t € T) ,
where the functions ¢; are given and |¢:| = 1 for every t € T. P, is
a projection, indeed, since ||P;|| < 1and P,oP, = P, (t € T). It is
obvious that the conditional expectation operators are prOJectlons of
the form (6) with ¢ = 1.
The sequence (F;, P;;t € 'T) is called a tree basis if for the projec-

tions defined in (6) we have

(i) Pif = ¢uE(fd,) for every u <t and f € L1,

(ii) PyP, = 0 for each incomparable u and ¢ from T.
Note that the equality P,P, = P,P; = P, for u < t follows from (i).
We say that a sequence (f;,t € T) of integrable functions is a #ree
martingale .if u < t implies P, f; = fu (u,t € T). If f € Ly then the
sequence (P;f,t € T) is obviously a tree martingale and it is denoted
also by f.
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The succeeding element of ¢ € T, namely, the minimum element
of T, \ {t} is denoted by ¢*. For simplicity we suppose that if t = ut =
‘=% then F, = F,. This common o-algebra will be denoted by F;-.
For t € Ty we define an element {~ < ¢ and set F,—- = F;. We say in
this case that (7)" =¢. Let Ty :={t":t € Tp} and T := TUTy.
df := (duf,t € T) is called a martingale difference sequence if
(i) d.f is integrable for every t € T,
(ii) Pi(dif) =0 for every t € T,
(ii) Pyt (dif) = dyf for every t € T.
In case f = (f,t € T) is a martingale then df := (dyf,t € T) is clearly
a martingale difference sequence, where
dtf = ft+ (t € Ta), dtf = ft+ - ft (t € T)
The converse is not true because from a martingale difference sequence
we cannot define f; uniquely. However, if df is a martingale difference

sequence and
Y dif= ) dif

v<t<u s<t<u
for everquTandvseT with v,s < u, then (f,,u € T) is a
martingale.

Suppose that there is a distinguished minimal element vo € T
for which d,,f = 0 for all tree martingale difference sequences. For
a martingale difference sequence (d:f,t € T) we define the mazimal
function. by
f* :=sup f;.

teT

* L
fi = sup sup
u€Ty ulr<t

Since for an integrable function f
|Pef| < Eilf]
and (F;,t € T) can be linearly ordered, ( ) holds also in the tree case.
We are going to introduce the quasi-norm || - ||grg. Let g = (g1,% €
€ T) be a sequence of A measurable functions defined on . For 0 <
< p,g < oo set

p/q 1/p
@) oy =5y ( | [ 1t iy coucen]” 0P)

teT

while for 0 < p < 00, g = ©
(8) lgllage = supyP(g* > y)"/?
y>0

where © < t means that u < ¢ but u # ¢ and
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9; = sup |gu/, g" :=supg;.
u<lt teT

Denote by HJ the set of such sequences g which satisfy ||g|lgs < oo.
Note that the right hand side of (8) is the weak L, norm of g*. Observe
that, for each fixed sequence g, the function g ~ [|g||gs decreases and
P+ ||gllpg increases.

For a martingale difference sequence df we define

ldfllg == 1(ff,t € T)llmg  (0<p<o00,0<q<00).

Of course, if f = (fi,t € T) € L1 is a tree martingale, then ||df||pg =
= ||fllmg- It is proved in Schipp [13] that || - [[zrg is really a quasi-norm
and that the map g + [|g||ns is non-decreasing in the following sense:
if |g¢| < |he| for all t € T then [|g|lgs < [|Alleg (0 < p < 00,0 < g < 00).

Notice that if T is linearly ordered then the sets on the right hand
side in (7) are pairwise disjoint and

llgllexs = supyP(g" > y)"/?
y>0

for any 0 < p < oo and 0 < g < co. Thus, in the linear case, by using
the H quasi-norms, the maximal inequality (1) can be reformulated as
follows:

Nrem)

This form of the maximal inequality can be transfered to the tree case.
Let A denote the closure of the triangle in R? with vertices (0,0),
(1/2,1/2) and (1,0) except the points (z,1 —z), 1/2 < z < 1. Let
§ : T — T be a map such that §(2) < ¢ and Fs) C Fs() for each
u < t. Set

o SHFll (1 <p<o0,0<g<00).
P

ff=Eswlfil  (teT).
Theorem 1. Let f = (fi,t € T) € L, be a tree martingale and suppose
that 1 < p,q < oo satisfy (1/p,1/q) € A. Then

(7.t € Dllag < Coallfle  (f € LP).

We omit the proof since it can be found in Schipp [13] or Weisz [19].

4. Predictable martingales and atomic decomposi-
tion

The predictable martingales can be defined in the tree case, too. A
martingale difference sequence df = (d;f,t € T) is said to be predictable
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by a sequence A = (A,t € T) if A is increasing and each \; is Fy-
measurable with

fi < (teT).
Denote by PJ (0 < p < 00,0 < ¢ < c0) the collection of such sequences
df for which )\ € H and set

ldfllpg == inf”)‘”H;’,
where the infimum is taken over all predictions )\ € H? belonging to df.

Now we introduce the concept of tree atoms: a martingale differ-

ence sequence da = (dsa,t € T) with a* € L, is a (tree) atom if there
exists a non-increasing sequence (A;,¢t € T) of adapted sets such that
v+t =+ implies A, = A; and

(i) . dy-a=0 (ue Ty
(i) dals, =0 (teT).
Let

Q= Oz? = lA:— H 1Au_

where A,- := A, whenever ut = t.

The atomic decomposition of P] in the tree case reads as follows.
Theorem 2. If the martingale difference sequence df = (d;f,t € T)
isin Pl (0 <p<o0,0<g< oo) then there ezist da® = (dia®,t € T)
(k € Z) atoms such that

(e0]
©) la"*lleo <3-2%,  dif= ) dia® (teT)
: Rt

and _

p/a\1/p
10 sup 2%(E af < Cp,qlld
10) kelz) ( [(;‘ t) D < Cpqlldfllpg
where af := ag"_

Proof. Let A be a prediction of df and let
dia® = Ligkan, <2erydef  (E€T), dy-a® =0 (ueTy).
Since {2F < A+ <281} € F for all ¢t € T, da* := (dya*,t € T) (k €
€ Z) is a martingale difference sequence. Setting
AF = <28} (teT)
we can see that da” is an atom. Moreover, it is easy to show that the
second equality of (9) holds.
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For fixed w € 2, u € Ty and u < t € T let v; be the minimum
element such that ©u < v; < t and 2% < /\q < 2k+1 and let vy be the

minimum element such that v < vy and Ayt > 2k+1 If such a vy does
not exist then let v9 = oo.

Z dtak: z 1{2k<,\8+szk+1}dsf=

uls<t u<s<t
= § dsf = E dsf — E dsf.
U1 <8<tAU2 u<s<tAv u<s<vi

From this it follows that

DIETUES S S WHED WS Ll

u<ls<t
which proves the first inequality of (9). Since AF := {); < 2%}, we
have

af = Liak_ye H Lar_ = 1p>26, Au<or (vu<))-
u<lt
Thus (10) follows from the definition of the HZ norm. ¢
The next theorem says that for the boundedness of a sublinear op-

erator from P to the weak L, space, it is enough to check the operators
on atoms.
Theorem 3. Letp < ¢ < oo and U be a sub-linear operator which
maps the collection of martingale difference sequences into the set of
non-negative measurable functions. Suppose that U(d,-f) = 0 (u €
€ To) and

(11) U(¢def) = €U(def)
provided that £ is F; measurable and t € T. If there exists a constant
R > 0 such that

(12) P(U(da) > 2) < Cpqlz —2R)E[( 3] a,,)p/q]

veT

for all z > 2R and all atoms da with ||a*||ce < 1, then
1
supyP(U(df) > 9)"" < Coglldflley  (df € PY).
y N

Proof. The sub-linearity of U implies
U(df) <> U(da*)
kEZ
where the atoms da® are defined in the proof of Th. 2. Choosing j € Z
such that 27 < y < 29*! we get for k > j + 1 that
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Loe<yyU(da®) < U(dia")1paegyy =
ter

= Z U(dtf)1{2k</\;+ <ar+13lancyy = 0.
teT
Thus

1{)‘*<y}U df Z 1{,\*<y}U da < ZU(da

k=—o0 k<j
Since y > 27 we can conclude that

P(U(df) > (3+ 12R)y) <
<yPP(X > y) +yPP(U(df) > (3+ 12R)y, A" <) <
< M + 7P (3 Uda®) > 3+ 12R)y) <
< CpqlldfllBg + y”P(Z U(da®) > > (322" + 6R2k))
h<s k<
where z, = cg2B~ D=3 cg =1 —27P and B > 0. Observe that

stj 2% 2, = 27, Then for 8 = (g — p)/(2q) we get
Z}:qQ—pk < Cp qz—ijP(j—qu(ﬁ-l)(j—k) <G qy—pg(q—p)(k—j)/z_

Consequently, by (12),

P(Z U(da®) > > (322" + 6R2’“)) <

k<j k<j

<ZP< (3 2k> > (zk+2R)) <

k<j

<G "B (3 ORE

veT

< Cpyg ZZE"T’””IIde” < Cpqy P df s
k<j
which proves the theorem. ¢

5. Bounded operators on Pj

We investigate the following tree martingale transform. Suppose
that the sequence T = (T*,t € T) of linear operators satisfies the
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following conditions for all ¢t € T:

(i) P (TH(def)) = T*(ds ),
(i) P(T*(def)) =0,
(iii) for every F; measurable function ¢ one has T*(£(d:f)) =
= éTt (dtf)7
(iv) |T*(d:f)|*> < R%E;|d:f|* where the constant R is independent
of t and of df.

The mazimal function of a tree martingale transform is defined by
Ty () = sup | Y TH(S)|,  T(df) = sup Ty ().
'I‘ETt t§u<1‘ tET
We introduce the quadratic variation and the conditional quadratic vari-
ation for tree martingale difference sequences by

S(df) :=sup ( Z ]duflz) i and s(df) :=sup ( Z Euldufl2) 1/2.
teT N ST €T e,

Now we are ready to prove the boundedness of the martingale
transform and the quadratic variations.
Theorem 4. Ifdf = (dif,t € T) € P] is a tree martingale difference
sequence and (pV /2p) < ¢ < oo then

sup yP(T**(df) > y)'P < Cp glldfllps,
Yy

sup yP(S(df) > y)*? < Cpqlldflles,
Yy

sup yP(s(df) > y)/? < Cpqlldflps-
Proof. We are going to verify only the first statement because the
others are similar. It is enough to prove the inequality (12) for the
operator T**. So let da be an atom with ||a*|lc < 1. Let us fix ¢ < wu
in T and w in 2. If the set
{vET:t§U<u,1A5(w):1}
is empty then
Tyu(da)(w) = Y T"(dra)(w)= D laz(w)T"(dra)(w) =0
t<r<u t<r<u
or else let £; be its minimum element. Moreover, denote by £p a mini-
mum element of the set
{v eT:v< t+1’1A$— (w) = 1}.

Thus a;,(w) = 1 and T}, (da) can be written in the form
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Tiu(da)(w) = Ty u(da)(w) = T* (dy, a) (w) + Tt , (da)(w)

= T" (dt, @) (W) + 0o (W) (Th,u(da) (W) — Ty, v+, (da) (w)).
By predictability and by (iv) of the definition of the martingale trans-
form we have

7% (@ a)| < R[B, (Idia?)] " < R[B, (4a;2)]"* < 2R
On the other hand,
|Tt0,u(da,) (w) - Tto’t;r (da) (w)| < 217 (da) (w).
Taking the supremum over all u € T; and ¢t € T we get
(13) ’ T**(da) <2 Slell'l)“ a,T,*(da) + 2R.

By (i) of the definition of the martingale transform one can see
that
T"(dua) = Py+ (T*(dua)) = ¢ Byr [T*(dua)d,]  (u>v),
hence ¢,T“(dya) is F,+ measurable. On the other hand, by (ii),
0= Py (T%(dua)) = ¢u By [T*(dua)d, ] (u > v),

consequently, ( T%(d,a)¢ is a one-parameter martingale difference
v u>v &

sequence relative to (fu+)u2:,. By |¢»| = 1, one has for each v € T
T;*(da) =swp| > T*(dua)3,
r2v v<u<lr

Using the inequalities (1) and (2), (iv) and the convexity theorem in
(4) we obtain

B(T*(@))] < Gy 5, [ (3 1763, )™ <

uU>v

< G (3 Pltl?)™] = o [ (S )™

u>v u>v

provided that pg > 2. Since (dua?ﬁv) is again a one-parameter
U

>v
martingale difference sequence and [|a*||cc < 1, (1) and (2) implies
Po
19 BT ()] < CpBu [|S dud| | < G

u>v

Applying Tsebisev’s inequality, the concavity theorem in (5), (13) and
(14) one can see that
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P(T**(da) > z) < P(2sup o, T, *(da) + 2R > 2) <

e
< (552) " sl et @y <

< Cy(z—2R)" {(;T oy (T2 (da) )po)"“’“]
< Cpy oz — 2R)" QE[(UEZT% (@ (da))) "] <
< Cpqlz—2R)™E [(ze; av)”/ i}

where pg := q2/p. Th. 3 completes the proof. ¢
The concept of regularity is going to be introduced. F is said to
be regular if there exists a constant C' > 0 such that for all f € L,

(15) |Eyf| < CE-|Eyf|  (t€T)

where F;- denotes the conditional expectation operator with respect
to Ft—- .

Corollary 1. Suppose that 1 < p,q < oo with (1/p,1/q) € A and
f=(ft,t € T) € L, is a tree martingale. If F is regular then

| fllps < Cp,qll fllp-

Proof. By (15), |fi:] < CE.-|f:| (t € T) and so the sequence

At =CsupEy-|fu] (t€T)
u<t

is a prediction of f. For each t € T we choose one u € T for which

ut =t and set 6(¢) := u. The corollary can be derived from Th. 1. ¢
The next consequence, that is a generalization of the one-para-

meter results, comes immediately from Th. 4 and Cor. 1.

Corollary 2. If F is regular, 1 < p < oo and f = (fi,t € T) € L,

then

sup yP(T**(f) > y)'/? < CplIfllp, supyP(S(f) > )*"® < Gyl £l
y>0 y>0

supyP(s(f) > y)'/? < Gyl fllp.
y>0
The strong version of Cor. 2 can also be shown which includes
Burkholder—-Gundy inequality.
Corollary 3. If F is reqular, 1 < p < co and f = (fy,t € T) € L,
then
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1T fllp < Cpll fllps cpllfllp < NS(Hlp < Coll Fllps
cpllfllp < lIs(Hllp < Coll fllp-

Proof. The right hand sides of the inequalities come by interpolation
and from Cor. 2. To prove the left hand side of the second inequality
observe that, by the one-parameter Burkholder-Gundy inequality (see
(1) and (2)),

17l = 1Bl < Goll( 3 1de2) 1l < oIS

t>vo
where vg is the distinguished minimal element of Ty. The left hand

side of the third inequality can be shown in the same way by using the
regularity (cf. Weisz [19]). ¢

6. Convergence of Vilenkin—Fourier series

First we introduce the Vilenkin systems. In this section Q = [0, 1),
A is the o-algebra of the Borel sets and P is the Lebesgue measure. Let
(pn,n € N) be a sequence of natural numbers with entries at least 2.
Introduce the notations Py = 1 and Pny1 := [[reo Pk (n € N). Every
point = € [0,1) can be written in the following way:

w—ZPL—i-l

In case there are two different forms, we choose the one for which
limk_,oo T = 0.
The functions

0<zx <pr, x € N.

2mzy,

rn(z) := exp (n € N)

V(3
are called generalized Rademacher functions where 2 := /—1. The
product system generated by these functions is said to be a Vilenkin

system:
[o o]

wp(z) = H i (z)"*
k=0

where n = Y72 nkPr, 0 < ng < pi and ng €N

Let F,, be the o-algebra generated by {ro, ..., n—1}. It is easy to
see that

Frn=0c{[kP;  (k+1)P;") :0< k< P,}.

Denote by R, f the nth partlal sum of the Vilenkin-Fourier series

of f el ie.,
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n—1
Rof =) f(k)ywy
k=0

where f(k) := E(fwy) are the Vilenkin-Fourier coefficients of f. Notice
that Rp f = Enf.

A Vilenkin system generated by a bounded sequence (py,) is said to
be bounded. Tt is easy to show that in this case the sequence (Fy,,n € N)
of o-algebras is regular (see e.g. Weisz [19]).

A Special trees generated by Vilenkin systems are considered. Let
us introduce the index set

T =1 = {[kPy, (k + 1)Pa) AN:kneN}.

The ordering in T is defined by set inclusion. Obviously, Zo = N. For
I =[kP,,(k+1)P,) NN € T we set F := Fp. Therefore, (1,1 € I)
~ can linearly be ordered. The projections

Prfi=3 fGr; (T€I)
jel
are to be investigated. For a function f € L; we suppose that f (0) = 0.
It is easy to see that
Pif = > E(fw;)w; =
JE€kPy,(k+1)Pr)
P,—1
= Y E[(fWkp,)Wi|wip,w; = wkp, En(fTrp,)
i=0
whenever I = [kP,,(k+ 1)P,) NN € Z. It can be proved in the same
way that, for an arbitrary m € I,
PIf = 'men(f—'iU—m)-

This implies that (Fr, Pr; I € T) is a tree basis, indeed.

The partial sums R, f of the Vilenkin-Fourier series of f € Ly can
be expressed as a martingale transform of the tree martingale (Erf,Ie
€ 7). For this set

m{n) := Z my Pr, I(m) := [m(n),m(n) + Py) (n eN)
k=n
for m € N with the expansion m = 3 po, miPr (0 < my < pg). Notice
that m is contained in I,(m) and I,(m) C I,41(m). For I = I(m),
set
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(16) T! = Th(m) = Z Pj.

[m(n+1),m(n))DJIET

Since I,(m) = I,(m) implies m(n + 1) = m(n + 1), the sequence of
operators T = (T?,I € T) is well defined. Note that in (16) there are
m, summands. In case the Vilenkin system is bounded, it is easy to
show that these operators T! (I € T) satisfy the conditions in definition
of the tree martingale transform. Note that for the Walsh system,
TIn(m)(dIn(m)f) = Mypdy, (m)f. Observe that

0,m) = [ [mln + 1), m(n))
n=0
which implies v
Ruf=% Y f®uw=).T0Wfr= 3" T4y
n=0 ke[m(n+1),m(n)) n=0 {m}<I

where (d;f,I € T) is the martingale difference sequence of the tree
martingale f = (E;f,I € ). Thus the maximal function of the partial
sums of the Vilenkin-Fourier series of f € L; can be estimated by the
maximal function of the martingale transform of the tree martingale f,

namely,
R f:= su% | R f| < T** f.
me

If the Vilenkin system is bounded then, by the regularity of (,,n € N),
we get immediately that F := (Fr, I € T) is regular, too.

Applying a usual density argument due to Marczinkiewicz and
Zygmund [9] and Corollaries 2 and 3 we obtain our main result.
Corollary 4. Suppose that the Vilenkin system is bounded, 1 < p < oo
and f € L,. Then

supyP(Rf > y)"? < |\ fllp < Gyl £l
Yy
Consequently, for every f € L, with p > 1 we have
Ro,f—f aeas m— oo

Of course, Cor. 4 implies that R, f converges to f also in L, norm
(1 < p < 00) as m — oo whenever the Vilenkin system is bounded.
In what follows we give a new proof this result for arbitrary Vilenkin
systems. Note that for an unbounded Vilenkin system the operators T
(I € ) defined in (16) do not satisfy the condition (iv). However, the

weaker inequality
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B |T'fI? < CEW|f? (f € L1, T = In(m))

follows from Bessel’s inequality. This result can be extended to each
1 < p < o0. Since

m — (my — )P, € [m(n+1) +1P,,m(n+1) + (I + DP,)
(0 <1 < my,), the operator T can be written in the following form:

mp—1m(n+1)+(1+1)Pr—1
Tif= > > Fkywy, =
=0 k=m(n+1)+1P,
May—1
= Z wm—(mn—l)PnEﬂ(fmm——(mn—l)Pn) =
=0
Mmpy—1

= Wm Z w(mn—l)PnEn[(fwm)w(mn—J)Pn] =
=0

=W Y Tmr " B [(fWm )]
=1

The inequality

|Rmfllp < Collfllp (1<p<o0)

for trigonometric Fourier series (see e.g. Zygmund [21], Vol. L. p. 266)
and an inequality relative to the discrete Fourier series presented in [21]
(Vol. II. p. 28) imply that

(17) E.|T'fP < CoEnlfP (f € Ly)

where Cp is independent of n and f. Using this we can prove the
following norm convergence result due to Schipp [11] and Young [20]
(see also Simon [15]).

Theorem 5. Suppose that the Vilenkin system is arbitrary, 1 <p < o0
and f € Lp. Then

| B fllp < Cpll fllp

where Cp is independent of m and f. Consequently, for every f € Ly
with 1 < p < oo we have
R,.f—f in Lp, mnormas m— 0.

Proof. First suppose that 2 < p < co. It follows from (3) that
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| B fllp = H Z TI(dIf)“p =

{m}<I ,
<G|( 3 Eir@n?) | ol sw @i, =
{m}<I {mist
<G[( X Edr (@) ) +cp(E[ 3 |Tf(dffjlp])l/p=
{m}<I {m}<I
<C, ( S° BT (def)] ) +cp(E[ 3 EIITI(dIf)|PD1/p.
{m}<I {m}<I

Using the inequality (17), (4), (1) and (2) we obtain

1Bmflls < G| ( 3 EI[d,flz)l/szqucpH( > |dIflp)1/PH
{my<I fmy<I

1/2
<G|[( 32 14sB) || < CollfBmlly = Gollflle
{m}<1 g
The theorem for 1 < p < 2 can be proved by a usual duality
argument. ¢

p
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