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Abstract: Given two Darboux motions &1 \ Zg and 2 \ &y in Euclidean 3-
space, which are linked by common angle of rotation as time parameter. Then
we are able ta show, that the relative motion Y2 \ 21 is line-symmetric in the
sense of J. Krames with a special ruled surface of degree 4 as basic surface.
Further in ¥ in the general case there exists at least a two-parametric family
of real points, which are moved on spheres under 3 \ ¥;. Examples finish

the paper.

0. In the last years a great variety of overconstrained linkages has been
studied, which are gained by linking systems with spherical 2R-links
(see [14], [15], [17], [18], [19], [20], [21]). The most famous of these
linkages seem to be the socalled Heureka-polyhedron (see [18], [21] and
the references given there). It has been shown, that most of these mod-
els consist of relative motions gained by combining an axial Darboux
motion with an inverse of another (in most cases congruent) Darboux
motion — both parametrized with respect to their angle of rotation.
In generalisation to these facts we here start with not necessarily axial

Darboux motions.

1. In the 3-dimensional Euclidean space Es we use cartesian frames
{O;; @i, yi,zi} (1 = 0,1,2) to describe points of given systems 3; (i =
= 0,1,2) by their position vectors. There ¥; and X5 are moved by
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Darboux motions ¥; \ g and X5 \ Xy with respect to the fixed frame
Y. Both one-parameter-motions shall be parametrized by the angle
of rotation denoted by t. We will call such Darboux motions linked
Darbour motions. The Darboux motions are cylindrical and therefore

have fixed directions. In ¥; ‘(22.) the z:- (@—)axig shall denote this fixed

direction. Then a parametrization of such a motion may be given by

a;” —a;" +x;
?o(t, ?z) = ;" + | —ei™ +y; | cosi+
e + z; —e;"

bi* — yi

+ | d;* +x; | sint (t €[0,27])
[i*

with real constants a;*,..., f;* (i = 1,2; cf. [1, p. 306]). Rotation about

the zg-axis through angle ¢; gives representations of ¥, \ X5 and X\ g
1n the form

ai —a; + &
?O(ta ?1) = | e;—zising; | + | —ci +y;cose; | cosi+

e; + 2; cos p; —e; + y;sin @y

(1)

by —y,

+ (di—i—wicycw gpi) sin ¢ (t € [0,2n])
fi+ xisin @;

(i = 1,2) with other real constants a; := a;*, b; := b;*, ¢; := ¢;* cos; —

—e*sing;, d;f = di" cos; — fisingy, e = ¢;*sing; + e;* cos oy,

fi = d;" sing; + fi* cos ¢;. In ¥y the zg-axis shall be a line of symmetry

for the two fixed directions (0, —sing, cosg) and (0, sing, cos ).

Therefore we have ¢ = —p1 = @o.
2. The relative motion ¥, \ ¥;. By taking the inverse motion
of £1 \ Xy and then combining it with X5 \ ¥y we get the following
representation of the point paths of X2\ X4
(3)
Zi(t, F2) =
Acost + Csintcose — Esintsin @
=| —Asint+ Ccostcosp — Feostsineg | (1 —cost)+
Csine+ Ecose

+ | —Bsint+ Dcostcose — Fecogtsin g

Beost+ Dsintcos e — Fsintsin @
sin £+
Dsin ¢ + Fcos ¢

cos? t + sin? t cos 20 —sintcost(l —cos2¢) —sintsin2e r2
+ | —sintcost(l — cos 2¢) sin2 ¢ + cos? tcos 2¢p — costsin 2¢p Y2
sin £ sin 2¢ costsin 2¢ cos 2¢ 22

There we have used abbreviations A := ay — a1,..., F = fo — fy.

By substituting « := tant/2 we see, that this motion has a rational
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parametrisation of degree 4. It i1s a special motion of those considered
by the author in [13] — there motions with this property were called
“rational one-parameter motions of degree 4”7. Therefore we have
Theorem 1. The relative motion Xo\X1 of two linked Darboux motions
Y1\ X0 and 32\ Yo (in general) is a special rational motion of degree 4.
All point paths allow a rational parametrisation of degree 4 by a common
parameler.
Remark. Formula (3) shows that our relative motion X5 \ £; does
not change its representation, if we fix the constants A, B,..., f and
change our input data a;, ..., f; according to the fixed values A = as —
—ay,...,F= fo—f1. So we are allowed to take a very special Darboux
motion to be the first generating motion ¥, \ ¥y. The second generating
Darboux motion then has to be constructed as mentioned above.
3. The relative motion Y- \ X; is line-symmetric in the sense
of J. Krames. We now are able to prove the following
Theorem 2. The relative motion Xo\X1 of two linked Darbouxr motions
Y1\ X0 and X2\ Xg (in general) is a special line-symmetric motion of
degree 4 in the sense of J. Krames [5]-[11]. The basic surface of these
hne-symmetric motions 1s generated as path of a straight line under the
inverse motion g \ X1 or Yo \ Yo of one of the generating Darboux
motions.

These relative motions already have been studied by R. Bricard [3]
and J. Krames [10].
Proof. A) In [13] I proved that rational motions of degree 4 may have
real points with plane paths. We look for these points now: We deter-
mine
(4)

?l(t: ?2) =

-4 Ccosp — Esin e — 298in 2¢
= | —Ccosyg+ Esin ¢+ 20sin2¢ |sint + —-A cos t+

Csing + Fcos ¢ — yosin 2¢ Dsin o + Fcosp + @asin 2p

+ | -B+4+Ccosp — Esing+ y2(1 — cos 2¢)
0

B — Ccosy+ Esin ¢ — y2(1 — cos 2¢)
cos 21.

A4 Dcosyp — Fsing — x2(1 — cos 2¢)
sin 2f+

+ | A+ Dcose — Fsing —a2(1 — cos 2p)
0

For the special points
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(5) A4+ Dcosyp — Fsingp — x2{1 — cos 2¢) = 0,
g2 B—-Ccosep+ Esing —ya2(l —cos2¢) =0

these derivation vectors are parallel to a plane and therefore the corre-
sponding points of Yo describe plane paths in ¥ . If we have sin2¢ # 0
(the generating Darboux motions then have different fixed directions —
our relative motion is not cylindrical; the case sin 2 = 0 will be treated
seperatly in chapter 5) we have a straight line g fixed in X5 with plane
point paths (these paths in general are ellipses — see (4)). But in the

case sin 2¢ # 0 the points of the straight line

—Dsi - F = in 2
() ho. .. S'Hl @ cos p = T2 S'Hl v,
Csing 4+ Fcosy = yasin 2

describe plane paths, too — see (4). The planes containing the paths
then are parallel. Summing up we at least have two straight lines fixed

in Y» with plane point-paths under the relative motion X5 \ ;.
B) The straight line go may be moved into the zg-axis of ¥5. Our
new origin may be moved onto this axis, too. We put

x2" = [A-I—Dcoscp — F'sing — x2(1 - cochp)]/(l — cos 2p),
(7) yo© 1= [B —Ccosyp+ Fsing —ya(l — cos 2¢)] /(1 — cos 2¢),
22" 1= [Ccosp — Esin ¢ — 23 sin 2¢)] / sin 2¢.

For symmetry reasons we change the position of the origin of the first
system, too:

r1*i=[—A—-Dcosp — Fsing — x1(1 — cos 2¢)] /(1 — cos 2¢),
(8) y1":=[—- B+ Ccosp+ Esing — y1(1 — cos 2¢)] /(1 — cos 2¢),
21" = [O cos @ + Esin ¢ — z1 sin 2(,0)] / sin 2¢.
We substitute according to (7) and (&) and compute the vectors

?o(t, 71*, ?2*) = ?o(t, 72*) — ?o(f, ?1*) =

A Hcose —x2" + 1"
= (21" 4+ 22" )sin ¢ +cost | G— (yo* —y1*)cosp | +

—(zg*—zl*)coscp —(y1*+y2*)sincp

—Geosp+y2* —y1”
+sint | H—(z2" — 21" )cose | .

—(z1* + x2*)sing

(9)

For further simplification we have put
G = (—C+Bcoscp)/sin2cp and

10
(10) H:= (D+Acosgo)/sin2§0.

Using 70(15, ?1*, ?2*) = o we determine ?1*. This gives the new
representation of the relative motion X5* \ £;*. Formula (9) shows,
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that ¥o* \ ¥;* may be gained by starting with the generating Darboux
motions ¥1* \ ¥g and Yo" \ Xy parametrized by

—A[2 —05Hcosp — 1"
70(15,?1*) i=| —z1*sing | + | -G/2—y1*cosp | cosi+
—z1" cos @ y1* sin @

0.5Gcosp+y1™
+ | —H/2—=21"cosy |sint (t € [0, 2n])

r1" sin ¢
(11) and
Af2 0.5H cosg —xa®
70(1‘, ?2*) = z2% sln @ + | G/2—y2*cosy | cost+
—z2" cos @ —y2%sin @

—0.5G cosp + y2*
+ | H/2-ax3*cose |sint (t € [0,2x])

—x2” sin @

instead of (2).
If we now reflect ¥ and Xo™ (11) with respect to the zg- (20*-)axis

into io, ig, resp., the motion Xo* \ ¥g obtains the representation

o o —A/2 —Fo — Hf2cosp
$2/3%0 ... Tolt, @2)= | —Zasing | + | ~G/2 — Gacose | cost+

—Z5 cos y2 sin
(12) 2 ¥ Y2 ¥
0.5G cos @ + 42
+ | -H/2—-F3cos e | sint.
Ty sin @

This is exactly the representation (11) of the generating Darboux motion
Y15\ Xy if we put @g = Zo, yo = Yo, 20 = Zo and @1 = Fo, y1 = Yo,
z1 = Zo. Therefore we have: ¥;* \ Xy may be gained by reflecting
the generating Darboux motion ¥o* \ Xg with respect to a straight line
fixed in Y. Thus our relative motion is line-symmetric in the sense of
J. Krames [5]-[11]. ¢

The basic surface of this motion 1s generated as path surface I'; of
the zp-axis under the inverse motion Yo\ X1*. As ¥\ X" is the inverse
of a Darboux motion, this surface I'; in the general case 1s algebraic of
degree 4 — it first was used by J. Krames [10] in order to define special
line-symmetric motions. For special cases (see our examples) the degree
of I'y may be lower.
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4. Spherical paths under the relative motion. In following we use
the representation (11) of our generating Darboux motions. We omit
the “+” in the following. J. Krames [10] has shown, that at least a two-
parametric family of points of X5 under the relative motion Xo \ X5 is
moved on spheres centered in ¥;. As our concept allows a (new and

quick) determination of these points we will give it here:
Corresponding points 71 and ?2, fixed in the moving frames ¥

and X, resp., which in Xy hold fixed distances during the two Darboux

motions (we may say their distances are fixed under the relatlve motion

Yo\ ¥1), have the foHowmg property: The vectors 7 (, i 1, ?2) =
— =
=a + b cost+ ¢ smt( ) with
A N Hcosyp — 2o + a1
& = (z1 + 22)sin @ , b= | G-(y2—y1)cose |,
—(22 — z1)cos @ —(y1 +y2)sine
—Geosp+ys —y1
= H—(wg—xl)coscp

— (1 + x2)sin

(13)

have constant length, iff the 1dentity 7 (t ', E4 2) 7 (¢ 71, Z o)

_)
= 0 holds for all ¢ € [0, 27]. The vectors o, b, _> only depend of the
constants of the two motions and on the choice of the moving points ?1,
T resp. — they do not depend on the time parameter ¢t. Therefore

al(t, ?1, ?2) : % ol(t, ?1, ?2) =01s equivalent to

0= (E}_c)) cost + (??) sin ¢ + ( b _>) cos 2f—
(14) Ly o2
—0.5(¢"— b )sin2t forall te€][0,2n]
As {cost,sint, cos 2t,sin 2t} are linearly independent, the above equa-
tion yields 4 characteristic equations for the coordinates of correspond-
ing points ¥ 1, @ o whose distance remains fixed under the relative
motion Yo \ ¥y:
7.0 = T =
(15) 55

0
—2
=10 b _C>2.

?o)mputation of these equations yields
16

—Ars —yozisin 20 + 22(Gsinp + y1sin2¢) = —A(Hcosp + x1) — Gz sin ¢

—zoz18in 20 + Ayg + z2(Hsin g + w18in 2¢) = A(Geos e+ a1) — Hyrsin @
roy1 + y2r1 = —HG/2

—wam1 +yay1 = (H? = G?) /4.

The correspondence between “linked points” of ¥; and X5 in the first
two coordinates reads
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(17) RZ(—:L‘l cos 2o + y1 sin 2a) R2 (1 sin 2o + y1 cos 2o
r2 = 3 Y2 =
o1 +yi o1 + i
with abbreviations H := 2Rcosa, G := —2Rsina and certain reals

R and «. Thus we have: If it 1s possible to link points of ¥; and >
by sticks with constant length, the ground projection of corresponding
points of ¥y and Yo may be gained by an inversion with respect to a
circle, followed by a displacement (see also the results of R. Bricard [3]

and J. Krames [10]).
The relation between the z-coordinates of corresponding points
reads
A(2Rcosacos g+ a1 —a2) + (—2Hsin asin ¢ — ya sin 2¢)21

(18) 2 = T . . ’
—2Hsin o sin o + y1 sin 2¢0

where #2 and yo have to be taken from (17). In (16) there remains
an additional equation for z;, which gives one constraint to the linked
points in the first system. After some algebra we get

[(2y1 + Gl cos cp)Z + (2:01 + H cos cp)z + (G2 + Hz) sin2 cp] *

(19) .
* [A(ylG + o H+ 2(3:% +y%)cosg0) - zl(Hyl - Gccl)sm 2@)] =0,

Therefore the points of ¥y, which may be linked with points of X5
(via (17), (18)) are situated on an algebraic surface (19) of degree 4:
But our surface splits into two parts: A nonreal rotational cylinder and
a hyperboloid of one sheet containing the z;-axis ®;. As the planes z; =
= const give circular intersections, this hyperboloid 1s called orthogonal

(see J. Krames [10]).

Change of indices (and signs) gives the corresponding points in X»
on another degenerating algebraic surface of order 4: Its equation reads

[(2y2 — G cos np)? + (202 — Hcos cp)z + (G2 + Hg) sin? @] *

20
(20) *[A(yzG + x2H — 2(1’% + y%) cos ¢) — z2(Hyz — Gz} sin 2(,0)] = 0.

This surface splits into two parts, too and is congruent to (19). The
hyperboloid of one sheet belonging to the points of ®; will be called ®-.
Similar results have been gained by J. Krames in [10]. We sum up in
Theorem 3. Given two Linked Darbour motions X1\ Yo and Yo\ Xg
in a fieed space Yo, both parametrized with respect to the angle of ro-
tation. Then in the general case the relative motion Yo \ ¥, moves a
two-parametric family of points of Yo on spheres centered in 2. The
corresponding points are situated on algebraic surfaces of order 4 in both
systems.
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Remarks. 1) It may happen that the two linked surfaces do not contain
a twoparametric family of real points. Our result i1s an algebraic one
and therefore makes use of the complex embedding of the real space.

2) The straight lines go, h2 (5) and (6) are situated on the hy-
perboloid ®5. The points of ks via (17), (18) correspond to the point
at infinity on the zj-axis. The point-paths under X5 \ ¥; therefore are
rational quartics and situated in planes (like discussed earlier). These
planes have equations z; = const. An analogous result holds for the
inverse motion.

3) The points on the circles of constant height z; = const on &,
via (17), (18) belong to points on hyperbolas on ®5 — they are situated
in planes parallel to the z9-axis. Points on generators of ®; meeting the
z1-axis via (17), (18) correspond to points on generators of $» meeting
the straight line go = zo-axis.

5. The special case sin2p = 0. Here we have two possibilities:

A) ¢ = 0: Then (3) shows, that the relative motion X5 \ ¥ in this
case 18 a translation with rational trajectories of degree 4.

B) ¢ = n/2: Then the relative motion X5\ ¥; has a fixed direction
and therefore is cylindrical. In (7) and (8) the transformation of the last
coordinates shall be of the shape z;* = C'//2 — 21, 20* = C'//2 — z5. Then
all calculations proceed till formulas (19), (20) with ¢ = x/2. In the
general case the real part of surface ®o having spherical paths under
Y5\ ¥ splits into a plane (parallel to the fixed direction) and the plane
at infinity. In the very special case ' = [) = 0 we have G = H = 0
in (19) and (20) — hence in this special case all points of ¥ under
Y5\ X1 move on spheres. This gives a rational type of the well-known
Bricard-motion [3], which was seen to be line-symmetric by J. Krames
in [6].

6. [E]xamples. We study examples generated by two (congruent) axial
Darboux motions (1) with constants a;* = —A/2, ax* = A/2, b;" = by"
x=e* = =0,d1" = Af2,dy" = —A/2, e1* = ex* :=cand f1* =
= fy* = 0 with real constants A, 2. The axes of the two motions shall
be orthogonal: ¢ = m/4. Following (2), (3) and (10) we get constants
AB=0,C= -2, D = —05A4v2, E = F = 0 and G = 2z/2,
H = 0. The transformations (7) and (8) give new coordinates

rot = Af2 — a3 r*=—-Af2 -z
(21) y2* = e —yo2 y1¥ = —z -

*® *®
2o = —& — 23 21 = —e— Z1.

Omitting the “+” according to (19) the points of the algebraic surface
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[(y1 +2)° + 27 + 7]+
*[A(2ey1 + wf 4+ y%) + 25:01;;1] =10

(22)
are moved on spheres under ¥; \ X5. The corresponding points in the
system Yo belong to a surface congruent to (22). For corresponding
points formula (17) now reads

2e2 —2e7
(23) Tro = %’ Y2 = 26 y;
r1+ Y7 7+ Y1

As the constant A has no influence on (23) the ground-projection

of our relationship may be studied in the case
A) A = 0, ¢ # 0: The axes of the generating axial Dar-
boux motions meet at a point. Then the real part (second factor
in (22)) splits into two orthogonal planes. Points of the plane z; = 0
may be linked with points
of the plane z5 = 0 via the
inversion (23). From an-
other starting point this sit-
uation was reached in the
paper [14]. There two of
the neighbour facets of a
moveable model of a cube
have been linked by 4 sticks
of constant length. Fig. 1
shows this situation — it
shows parts of the planes
z1 = 0 and z9 = 0, the cen-
ters [172 c El, ]2,1 € 22
and circles ki o € Xy, koq €
€ X5 of inversion, too. Here
6 connecting sticks have

Figure 1. been drawn.

B) A # 0, ¢ = 0: Here the generating Darboux-motions are pure
rotations. Their axes do not meet. This is a very special situation
of Bennett’s isogram. The surface (22) splits into complex planes as
J. Krames has shown in [9]. In our special case the basic surface I'; of
this line-symmetric motion is gained by rotating a straight line round a
fixed axis — therefore I'; 1s a rotational hyperboloid of one sheet.
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Figure 2.

C) A # 0, = # 0: This case gives a partial motion of the mechanism
treated in [16]. Fig. 2 shows the situation: One hyperboloid and some
possible links are shown in two different views. There the sticks connect
points of two circles of the hyperboloid with corresponding points on hy-
perbolas situated on the second hyperboloid. This second hyperboloid
1s not shown here in order to give a more instructive picture.
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