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Abstract: It is known that every closed orientable 3-manifold can be rep-
resented by coloured knots ([4], [5]), edge-coloured graphs ([2]) or transitive
permutation pairs ([6]). The present paper describes some relations between
these representation theories: in particular, it is shown how to obtain a transi-
tive permutation pair representing a 3-manifold M3, starting from a coloured

knot representing M3,

1. Introduction

Throughout this paper, all spaces and maps are piecewise-linear;
manifolds are always supposed to be closed and connected.

In [6], Montesinos proves that every orientable 3-manifold M® can
be represented by a transitive pair of permutations (o, 7) of ) ., the
symmetric group on Ny = {1,2,...,h}. In fact, M? is a covering of
the 3-sphere S®, branched over the graph G of Fig. 1; thus, M3 is
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Fig. 1.

determined by a monodromy map é : [],(S® — G) — 3, defined by
sending the meridians m; and ms to ¢ and 7 respectively. If M? is
represented by (o, 7), we write M® = M(a, 7).

A well-known theorem of Hilden [4] and Montesinos [5] states
that every orientable 3-manifold M3 is a simple 3-fold covering of S%,
branched over a knot K C 5® (where “simple” means that the associated
monodromy w : H1(53 —K) — 3, sends meridians to transpositions).
In other words, M?® is representable by a pair (K, w), where K is a knot
and w: [[,(S® — K) — 3, is a simple monodromy map. Such a pair
1s called a coloured knot, since 1t can be visualized by a planar coloured
diagram D of K, in which each arc is coloured by k € 73 = {0,1, 2} if
and only 1f the transposition associated to the corresponding meridian
fixes k. Moreover, we can always suppose (see, for example, [1]) that
such a diagram is 3-coloured, i.e. at each crossing, the three incident
arcs have distinct colours. If the 3-manifold 33 is represented by the
3-coloured diagram D, we write M® = M (D).

In the present paper, by making use of results contained in [1]
and [3], we show how to obtain a tramsitive permutation pair (o, 7)
representing an orientable 3-manifold M2, starting from a 3-coloured
diagram D representing M2,
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2. Main results

Let D be a 3-coloured diagram of a knot, draw in the oriented
euclidean plane £2. Let ¢ = {c1,...,¢,} denote the set of the n > 3
crossings of D and, for each k € Z5 = {0, 1,2}, let of,. ..,afk be the
k-coloured arcs of D, with s, > 1 and sg+ 31 +59 = n. Foreach k € Z;
and each r € N,,, we are going to define a cyclic permutation on the
set C X Zg, associated to the k-coloured arc of. Denote the endpoints of
a® by the corresponding crossings cp, ¢; of D and suppose that of has
t = t* undercrossings (where ¢ can eventually be zero). If S denotes
the standard circle and d is a diameter of S', consider an embedding
Pk 81 Ud— £2 such that

a) U} (d) = of (and hence ¢} (3d) = {en, ¢;});
b) the intersection of ¥¥(S1 — §d) with the diagram D is given by 2t

points, one for each arc incident with o,

If ¢, is an undercrossing of o, denote by the same symbol ¢, the

intersection point of ¥F(S') with the (k + 1)-coloured arc incident to
k

Ay

in ¢,. Denote by C¥ the set given by the union of these intersection
points together with the endpoints ey, ¢; of af; hence, C¥ C ¢#(S') and
CardCF = t 4+ 2. Finally, let (cg, ..., Cqi42) D€ the ordered sequence
obtained by reading the elements of CF while walking along % (S?),
coherently with the orientation induced on it by the fixed orientation of

£2; the cyclic permutation ¢* on C x Z3 is defined in the following way:

Uf = ((qu, k)a R (th+2: k))
With these notations, we have the following result.
Main Theorem. Let C = {e1,...,¢,} be the set of the n crossings of
a 3-coloured dragram D of a knot and denote by sy, for each k € Zs,
the number of the k-coloured arcs of D. If o, 7 are the permutations on

C X Zg defined by

S [ (CRRCRINCR))
tEN
then (o, 7) 15 a transitive permutation pair such that M(a,7) = M(D).
The proof of this theorem, given in Section 3, makes use of the
possibility of representing manifolds by means of edge-coloured graphs
and is performed by joining two constructions, respectively described

in [1] and [3].
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Fig. 2

Fig. 2 contains a 3-coloured diagram representing S* x 52 (see [7],
Fig. 21); the application of the above algorithm produces the following
transitive permutation pair (o, 7) on Ng x Z3 such that M (o, 7) = ST x
X 5%

o= ((cl, 0)(c2, 0)(er, 0)(cs, 0 )( (cs,0)(co, 0 )((c4,o)(c6,o)(c5,o)).
-((cl,l) (c2,1)(es, 1 )( (ca, 1)(cs, 1)(es, )(c;;,,l)) ((66,1)(67,1))-
((ex:2)(e0, 2)(e5,2) ) ((e2, 2) (3, 2)(ea. 2)) ((er, 2)(es, 2)(e0, 2) ):

T = H (c“ (ci,1 (c@',Z)).
1ENg

Corollary. Let M3 be an orientable 3-manifold which is a simple 3-fold
covering of S° branched over a knot K and suppose that a 3-coloured
diagram D of K representing M?® has n crossings. Then M3 is also a
(3n)-fold covering of S® branched over the graph G.

Proof. The Main Theorem states that M® = M (D) can be represented
by a permutation pair (¢, 7) acting on C x Z3. Since Card (C x Z3) = 3n,
M? is determined by a monodromy map & : [[,(5® — G) — >, and
hence M? is a (3n)-fold covering of S® branched over G. ¢

(
2)
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3. The proof

Let us recall some notations and results about the manifold repre-
sentation theory by means of edge-coloured graphs; for a general survey
on it, see [2] or [9].

An (m+1)-coloured graph is a pair (I', v), where I' = (V(T'), E(T'))
is a finite regular multigraph of degree m+1 and v: E([') — Zpyy1 =
= {0,1,...,m} is a map such that y(e) # v(f), for each pair e, f of
adjacent edges. For every § C Zmq1, set Iz = (V(I'), v 1(J)); each
connected component of I'z 1s often called an F-residue. Note that,
for every distinct i,j € Zy,41, the {z, j}-residues of (T',y) are cycles
alternatively coloured by ¢ and j.

An m-dimensional ball complex K(T'), triangulating an m-pesudo-
manifold, can be associated to a given (m + 1)-coloured graph (I', v) by
the following rules:

— take an m-simplex a(v) for each v € V(I') and label its vertices
by Zmia;

— if v,w € V(I') are joined by a k-coloured edge, identify the
(m — 1)-faces of a(v) and a(w) opposite to the vertices labelled
by k, so that equally labelled vertices are identified together.

Even if its balls are simplexes, the resulting complex A (I') is not in gen-
eral a simplicial one, since the intersection of two simplexes may be the
union of more than one maximal face; nevertheless, it is a pseudocomplex
([2], p. 122). The graph (I',v) is said to represent K(I'), |K(I')| and
every homomorphic space. Note that every h-simplex of K (I'), whose
vertices are labelled by the distinct colours kg, . .., k., corresponds to a
unique (Z41 — {ko, ..., kp })-residue of (T, v) and viceversa.

FEvery m-manifold M™ 1is representable by (m+1)-coloured graphs
([8]). If (T, ~) represents M™, then M'™ is orientable if and only iof T
15 bepartile.

In [3], the following method is described for producing, starting
from a 4-coloured graph (I',v) representing an orientable 3-manifold
M3, a transitive permutation pair (o, 7) such that M (o, 7) = M?. Set
Card (V(T')) = 2n. Let V', V' be the two bipartition classes of V(T')
and identify V' with N,. If v € V' and k € Z3, denote by ax(v) the
vertex of V" which is k-adjacent to v and denote by o1 (v) the vertex of
V' which is 3-adjacent to ox(v). With these notations, define the two
permutations on N, X Z5 in the following way:
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=11 ((U,o),(v, 1), (v, 2)); Vo € Ny, Yk € Zs, o(v, k) = (ox(v), k).
vEN,
Roughly speaking, the permutation o is the product of the digjoint cycles
obtained by “reading” the vertices of V' in a suitable orientation of the
{k, 3}-residues of (I', v). The pair (¢, 7) is said to be associated to (I', )
Proposition 1. [3] Let (I',v) be a 4-coloured graph representing the
orientable 3-manifold M?® and let (o, 7) be the pair of permutations on
Nn x Z5 (2n = Card V(T')) associated to (T',~). Then M(o, 1) = M?.
On the other hand, the following algorithm, given in [1], produces
a 4-coloured graph representing the orientable 3-manifold M? described
by a given 3-coloured diagram P of a knot, draw in the oriented £2.
Suppose, with the same notations of Section 2, that C = {e1,...,¢,} is
the set of the n > 3 crossings of D and, for each k € Z3, let o, .. ., afk
be the k-coloured arcs of D. For every r € N, (resp. r € Ny, ), thicken
the arc af (resp. al) to a “strip” RY (resp. R1), so that all these strips
have disjoint interiors and, if the arcs o, al,, are incident to the same
crossing ¢;, then 6RY, and §R}, have a common edge, denoted by e;.
For every i € N,,, denote by v; and v the endpoints of the edge ¢;, so
that v; precedes v! while walking along §RY (r € Ny, ), coherently with

the fixed orientation of £2. Set Fs = |J {e:;} and denote by Fy (resp.
(EN,
F1) the set of the edges of | J (§RY) (resp. |J (dR})) not belonging
rEN;, rENg,

to Fs. For every ¢ € N,,, consider the 2-coloured arc af(i) incident to
the crossing ¢;; then, draw an edge b; between v} and vj(; if and only
if, while walking around O‘?(i) coherently with the fixed orientation of

£2, starting from the O-coloured arc incident in ¢;, the first incident
0-coloured arc is incident in ¢j;y. Set [z = U {6}
1EN,
Let (I', v) = I'(D) denote the 4-coloured graph defined by:
v(r) = | {oi, v}
N,
El) = U Ly, where each edge of Ej 1s coloured by k.
KEZ4
Proposition 2. [1] For every 3-coloured diagram D of a knot, the 4-
coloured graph I'(D) represents M (D).
Proof of the Main Theorem. Let (I',v) = I'(D) be the 4-coloured
graph associated to D, so that |K(I')] = M(D). Orient each {0,3}-
residue of (T, ¥) coherently with the fixed orientation of £2 and denote
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by V' the bipartition class of V(I') containing the second vertex of each
3-coloured edge e;. Note that each crossing ¢; of D corresponds to the
3-coloured edge e; of (I',); hence, we can identify the sets C and V'
with N,,. By construction, for each k € Z3, the {k, 3}-residues of (T, v)
are in one-to-one correspondence with the k-coloured arcs o, . . ., af’;k of
D; denote them by RY ..., R?k respectively. Moreover, for each k € Z3
and r € N, , there exists an orientation-preserving homeomorphism
between 1% (S') and R sending each point ¢, of C* to the vertex of the
3-coloured edge e, belonging to V', This proves that the permutation
pair (o, 7), acting on the set C x Z3 ~ N,, X 73, defined in Section 2, is
precisely the transitive permutation pair, acting on V' x Z5 ~ N,, X Z3,
associated to the 4-coloured graph (I', v). Hence, we have M(o,7) =
=|K(I')| = M(D). ¢
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