Mathematica Pannonica 7/2 (1996), 177 – 183

COLOURED KNOTS AND PERMU-TATIONS REPRESENTING 3-MANI-FOLDS

Luigi Grasselli

Dipartimento di Matematica, Università, Piazza Porta San Donato 5, 40126 Bologna, Italia

Received: October 1994

MSC 1991: 57 Q 15, 57 M 12

Keywords: 3-manifolds, branched coverings, coloured knots, coloured graphs.

Abstract: It is known that every closed orientable 3-manifold can be represented by coloured knots ([4], [5]), edge-coloured graphs ([2]) or transitive permutation pairs ([6]). The present paper describes some relations between these representation theories: in particular, it is shown how to obtain a transitive permutation pair representing a 3-manifold M^3 , starting from a coloured knot representing M^3 .

1. Introduction

Throughout this paper, all spaces and maps are piecewise-linear; manifolds are always supposed to be closed and connected.

In [6], Montesinos proves that every orientable 3-manifold M^3 can be represented by a transitive pair of permutations (σ, τ) of \sum_h , the symmetric group on $N_h = \{1, 2, \ldots, h\}$. In fact, M^3 is a covering of the 3-sphere S^3 , branched over the graph G of Fig. 1; thus, M^3 is

Work performed under the auspices of the G.N.S.A.G.A. of the C.N.R. (National Research Council of Italy) and financially supported by MURST.

L. Grasselli

Fig. 1.

determined by a monodromy map $\delta : \prod_1 (S^3 - G) \mapsto \sum_h$ defined by sending the meridians m_1 and m_2 to σ and τ respectively. If M^3 is represented by (σ, τ) , we write $M^3 = M(\sigma, \tau)$.

A well-known theorem of Hilden [4] and Montesinos [5] states that every orientable 3-manifold M^3 is a simple 3-fold covering of S^3 , branched over a knot $\mathcal{K} \subset S^3$ (where "simple" means that the associated monodromy $\omega : \prod_1 (S^3 - \mathcal{K}) \longmapsto \sum_3$ sends meridians to transpositions). In other words, M^3 is representable by a pair (\mathcal{K}, ω) , where \mathcal{K} is a knot and $\omega : \prod_1 (S^3 - \mathcal{K}) \longmapsto \sum_3$ is a simple monodromy map. Such a pair is called a *coloured knot*, since it can be visualized by a planar *coloured diagram* \mathcal{D} of \mathcal{K} , in which each arc is coloured by $k \in Z_3 = \{0, 1, 2\}$ if and only if the transposition associated to the corresponding meridian fixes k. Moreover, we can always suppose (see, for example, [1]) that such a diagram is 3-coloured, i.e. at each crossing, the three incident arcs have distinct colours. If the 3-manifold M^3 is represented by the 3-coloured diagram \mathcal{D} , we write $M^3 = M(\mathcal{D})$.

In the present paper, by making use of results contained in [1] and [3], we show how to obtain a transitive permutation pair (σ, τ) representing an orientable 3-manifold M^3 , starting from a 3-coloured diagram \mathcal{D} representing M^3 .

2. Main results

Let \mathcal{D} be a 3-coloured diagram of a knot, draw in the oriented euclidean plane \mathcal{E}^2 . Let $\mathcal{C} = \{c_1, \ldots, c_n\}$ denote the set of the $n \geq 3$ crossings of \mathcal{D} and, for each $k \in \mathbb{Z}_3 = \{0, 1, 2\}$, let $\alpha_1^k, \ldots, \alpha_{s_k}^k$ be the k-coloured arcs of \mathcal{D} , with $s_k \geq 1$ and $s_0 + s_1 + s_2 = n$. For each $k \in \mathbb{Z}_3$ and each $r \in N_{s_k}$, we are going to define a cyclic permutation on the set $\mathcal{C} \times Z_3$, associated to the k-coloured arc α_r^k . Denote the endpoints of α_r^k by the corresponding crossings c_h, c_j of \mathcal{D} and suppose that α_r^k has $t = t_r^k$ undercrossings (where t can eventually be zero). If S^1 denotes the standard circle and d is a diameter of S^1 , consider an embedding $\psi_r^k: S^1 \cup d \longmapsto \mathcal{E}^2$ such that

- a) $\psi_r^k(d) = \alpha_r^k$ (and hence $\psi_r^k(\delta d) = \{c_h, c_j\}$); b) the intersection of $\psi_r^k(S^1 \delta d)$ with the diagram \mathcal{D} is given by 2tpoints, one for each arc incident with α_r^k .

If c_p is an undercrossing of α_r^k , denote by the same symbol c_p the intersection point of $\psi_r^k(S^1)$ with the (k+1)-coloured arc incident to α_r^k in c_p . Denote by \mathcal{C}_r^k the set given by the union of these intersection points together with the endpoints c_h, c_j of α_r^k ; hence, $\mathcal{C}_r^k \subset \psi_r^k(S^1)$ and Card $\mathcal{C}_r^k = t + 2$. Finally, let $(c_{q_1}, \ldots, c_{q_{t+2}})$ be the ordered sequence obtained by reading the elements of \mathcal{C}_r^k while walking along $\psi_r^k(S^1)$, coherently with the orientation induced on it by the fixed orientation of \mathcal{E}^2 ; the cyclic permutation σ_r^k on $\mathcal{C} \times \mathbb{Z}_3$ is defined in the following way:

$$\sigma_r^k = \left((c_{q_1}, k), \dots, (c_{q_{t+2}}, k) \right).$$

With these notations, we have the following result. **Main Theorem.** Let $C = \{c_1, \ldots, c_n\}$ be the set of the *n* crossings of a 3-coloured diagram \mathcal{D} of a knot and denote by s_k , for each $k \in \mathbb{Z}_3$, the number of the k-coloured arcs of \mathcal{D} . If σ, τ are the permutations on $\mathcal{C} \times Z_3$ defined by

$$\sigma = \prod_{k \in \mathbb{Z}_3} \sigma_1^k \cdot \ldots \cdot \sigma_{s_k}^k,$$

$$\tau = \prod_{i \in \mathbb{N}} \Big((c_1, 0), (c_1, 1), (c_1, 2) \Big),$$

then (σ, τ) is a transitive permutation pair such that $M(\sigma, \tau) = M(\mathcal{D})$.

The proof of this theorem, given in Section 3, makes use of the possibility of representing manifolds by means of edge-coloured graphs and is performed by joining two constructions, respectively described in [1] and [3].

L. Grasselli

Fig. 2

Fig. 2 contains a 3-coloured diagram representing $S^1 \times S^2$ (see [7], Fig. 21); the application of the above algorithm produces the following transitive permutation pair (σ, τ) on $N_9 \times Z_3$ such that $M(\sigma, \tau) = S^1 \times X S^2$:

$$\sigma = \left((c_1, 0)(c_2, 0)(c_7, 0)(c_8, 0) \right) \left((c_3, 0)(c_9, 0) \right) \left((c_4, 0)(c_6, 0)(c_5, 0) \right) \cdot \left((c_1, 1)(c_2, 1)(c_3, 1) \right) \left((c_4, 1)(c_8, 1)(c_9, 1)(c_5, 1) \right) \left((c_6, 1)(c_7, 1) \right) \cdot \left((c_1, 2)(c_6, 2)(c_5, 2) \right) \left((c_2, 2)(c_3, 2)(c_4, 2) \right) \left((c_7, 2)(c_8, 2)(c_9, 2) \right);$$

$$\tau = \prod_{i \in N_9} \left((c_i, 0)(c_i, 1)(c_i, 2) \right).$$

Corollary. Let M^3 be an orientable 3-manifold which is a simple 3-fold covering of S^3 branched over a knot \mathcal{K} and suppose that a 3-coloured diagram \mathcal{D} of \mathcal{K} representing M^3 has n crossings. Then M^3 is also a (3n)-fold covering of S^3 branched over the graph G.

Proof. The Main Theorem states that $M^3 = M(\mathcal{D})$ can be represented by a permutation pair (σ, τ) acting on $\mathcal{C} \times Z_3$. Since $\operatorname{Card}(\mathcal{C} \times Z_3) = 3n$, M^3 is determined by a monodromy map $\delta : \prod_1 (S^3 - G) \mapsto \sum_{3n}$ and hence M^3 is a (3n)-fold covering of S^3 branched over G. \diamond

3. The proof

Let us recall some notations and results about the manifold representation theory by means of edge-coloured graphs; for a general survey on it, see [2] or [9].

An (m+1)-coloured graph is a pair (Γ, γ) , where $\Gamma = (V(\Gamma), E(\Gamma))$ is a finite regular multigraph of degree m+1 and $\gamma : E(\Gamma) \mapsto Z_{m+1} =$ $= \{0, 1, \ldots, m\}$ is a map such that $\gamma(e) \neq \gamma(f)$, for each pair e, f of adjacent edges. For every $\mathfrak{F} \subset Z_{m+1}$, set $\Gamma_{\mathfrak{F}} = (V(\Gamma), \gamma^{-1}(\mathfrak{F}))$; each connected component of $\Gamma_{\mathfrak{F}}$ is often called an \mathfrak{F} -residue. Note that, for every distinct $i, j \in Z_{m+1}$, the $\{i, j\}$ -residues of (Γ, γ) are cycles alternatively coloured by i and j.

An *m*-dimensional ball complex $K(\Gamma)$, triangulating an *m*-pesudomanifold, can be associated to a given (m+1)-coloured graph (Γ, γ) by the following rules:

- take an *m*-simplex $\alpha(v)$ for each $v \in V(\Gamma)$ and label its vertices by Z_{m+1} ;
- if $v, w \in V(\Gamma)$ are joined by a k-coloured edge, identify the (m-1)-faces of $\alpha(v)$ and $\alpha(w)$ opposite to the vertices labelled by k, so that equally labelled vertices are identified together.

Even if its balls are simplexes, the resulting complex $K(\Gamma)$ is not in general a simplicial one, since the intersection of two simplexes may be the union of more than one maximal face; nevertheless, it is a *pseudocomplex* ([2], p. 122). The graph (Γ, γ) is said to *represent* $K(\Gamma)$, $|K(\Gamma)|$ and every homomorphic space. Note that every h-simplex of $K(\Gamma)$, whose vertices are labelled by the distinct colours k_0, \ldots, k_h , corresponds to a unique $(Z_{m+1} - \{k_0, \ldots, k_h\})$ -residue of (Γ, γ) and viceversa.

Every m-manifold M^m is representable by (m+1)-coloured graphs ([8]). If (Γ, γ) represents M^m , then M^m is orientable if and only if Γ is bipartite.

In [3], the following method is described for producing, starting from a 4-coloured graph (Γ, γ) representing an orientable 3-manifold M^3 , a transitive permutation pair (σ, τ) such that $M(\sigma, \tau) = M^3$. Set $\operatorname{Card}(V(\Gamma)) = 2n$. Let V', V'' be the two bipartition classes of $V(\Gamma)$ and identify V' with N_n . If $v \in V'$ and $k \in \mathbb{Z}_3$, denote by $\overline{\sigma}_k(v)$ the vertex of V'' which is k-adjacent to v and denote by $\sigma_k(v)$ the vertex of V' which is 3-adjacent to $\overline{\sigma}_k(v)$. With these notations, define the two permutations on $N_n \times \mathbb{Z}_3$ in the following way: L. Grasselli

$$\tau = \prod_{v \in N_n} \left((v, 0), (v, 1), (v, 2) \right); \ \forall v \in N_n, \ \forall k \in Z_3, \ \sigma(v, k) = (\sigma_k(v), k).$$

Roughly speaking, the permutation σ is the product of the disjoint cycles obtained by "reading" the vertices of V' in a suitable orientation of the $\{k, 3\}$ -residues of (Γ, γ) . The pair (σ, τ) is said to be associated to (Γ, γ) **Proposition 1.** [3] Let (Γ, γ) be a 4-coloured graph representing the orientable 3-manifold M^3 and let (σ, τ) be the pair of permutations on $N_n \times Z_3$ $(2n = \text{Card } V(\Gamma))$ associated to (Γ, γ) . Then $M(\sigma, \tau) = M^3$.

On the other hand, the following algorithm, given in [1], produces a 4-coloured graph representing the orientable 3-manifold M^3 described by a given 3-coloured diagram \mathcal{D} of a knot, draw in the oriented \mathcal{E}^2 . Suppose, with the same notations of Section 2, that $\mathcal{C} = \{c_1, \ldots, c_n\}$ is the set of the $n \geq 3$ crossings of \mathcal{D} and, for each $k \in \mathbb{Z}_3$, let $\alpha_1^k, \ldots, \alpha_{s_k}^k$ be the k-coloured arcs of \mathcal{D} . For every $r \in N_{s_0}$ (resp. $r \in N_{s_1}$), thicken the arc α_r^0 (resp. α_r^1) to a "strip" \mathcal{R}_r^0 (resp. \mathcal{R}_r^1), so that all these strips have disjoint interiors and, if the arcs $\alpha_{r'}^0$, $\alpha_{r''}^1$ are incident to the same crossing c_i , then $\delta \mathcal{R}_{r'}^0$ and $\delta \mathcal{R}_{r''}^1$ have a common edge, denoted by e_i . For every $i \in N_n$, denote by v_i and v'_i the endpoints of the edge e_i , so that v_i precedes v'_i while walking along $\delta \mathcal{R}_r^0$ ($r \in N_{s_0}$), coherently with the fixed orientation of \mathcal{E}^2 . Set $E_3 = \bigcup_{i \in N_n} \{e_i\}$ and denote by E_0 (resp. E_1) the set of the edges of $\bigcup_{r \in N_{s_0}} (\delta \mathcal{R}_r^0)$ (resp. $\bigcup_{r \in N_{s_1}} (\delta \mathcal{R}_r^1)$) not belonging

to E_3 . For every $i \in N_n$, consider the 2-coloured arc $\alpha_{r(i)}^2$ incident to the crossing c_i ; then, draw an edge b_i between v'_i and $v_{j(i)}$ if and only if, while walking around $\alpha_{r(i)}^2$ coherently with the fixed orientation of \mathcal{E}^2 , starting from the 0-coloured arc incident in c_i , the first incident 0-coloured arc is incident in $c_{j(i)}$. Set $E_2 = \bigcup_{i \in N_n} \{b_i\}$.

Let $(\Gamma, \gamma) = \Gamma(\mathcal{D})$ denote the 4-coloured graph defined by:

$$V(\Gamma) = \bigcup_{i \in N_n} \{v_i, v_i'\};$$

 $E(\Gamma) = \bigcup_{k \in \mathbb{Z}_4} E_k$, where each edge of E_k is coloured by k.

Proposition 2. [1] For every 3-coloured diagram \mathcal{D} of a knot, the 4-coloured graph $\Gamma(\mathcal{D})$ represents $M(\mathcal{D})$.

Proof of the Main Theorem. Let $(\Gamma, \gamma) = \Gamma(\mathcal{D})$ be the 4-coloured graph associated to \mathcal{D} , so that $|K(\Gamma)| = M(\mathcal{D})$. Orient each $\{0, 3\}$ -residue of (Γ, γ) coherently with the fixed orientation of \mathcal{E}^2 and denote

182

by V' the bipartition class of $V(\Gamma)$ containing the second vertex of each 3-coloured edge e_i . Note that each crossing c_i of \mathcal{D} corresponds to the 3-coloured edge e_i of (Γ, γ) ; hence, we can identify the sets \mathcal{C} and V' with N_n . By construction, for each $k \in \mathbb{Z}_3$, the $\{k, 3\}$ -residues of (Γ, γ) are in one-to-one correspondence with the k-coloured arcs $\alpha_1^k, \ldots, \alpha_{s_k}^k$ of \mathcal{D} ; denote them by $\mathcal{R}_1^k, \ldots, \mathcal{R}_{s_k}^k$ respectively. Moreover, for each $k \in \mathbb{Z}_3$ and $r \in N_{s_k}$, there exists an orientation-preserving homeomorphism between $\psi_r^k(S^1)$ and \mathcal{R}_r^k sending each point c_p of \mathcal{C}_r^k to the vertex of the 3-coloured edge e_p belonging to V'. This proves that the permutation pair (σ, τ) , acting on the set $\mathcal{C} \times \mathbb{Z}_3 \simeq N_n \times \mathbb{Z}_3$, defined in Section 2, is precisely the transitive permutation pair, acting on $V' \times \mathbb{Z}_3 \simeq N_n \times \mathbb{Z}_3$, associated to the 4-coloured graph (Γ, γ) . Hence, we have $M(\sigma, \tau) =$ $= |K(\Gamma)| = M(\mathcal{D})$.

References

- CASALI, M. R.: Coloured knots and coloured graphs representing 3-fold simple coverings of S³, Discrete Math. 137 (1995), 87-98.
- [2] FERRI, M., GAGLIARDI, C. and GRASSELLI, L.: A graph-theoretic representation of *PL*-manifolds — A survey on crystallizations, *Aeq. Math.* 31 (1986), 121-141.
- [3] GRASSELLI, L.: Standard presentations for 3-manifold groups, Rend. 1st. Lombardo, Sez. A. 129 (1995), to appear.
- [4] HILDEN, H. M.: Every closed orientable 3-manifold is a 3-fold branched covering space of S³, Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
- [5] MONTESINOS, J. M.: A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S³, Bull. Amer. Math. Soc. 80 (1974), 845-846.
- [6] MONTESINOS, J. M.: Representing 3-manifolds by a universal branching set, Math. Proc. Cambridge Phil. Soc. 94 (1983), 109-123.
- [7] MONTESINOS, J. M.: Lectures on 3-fold simple coverings and 3-manifolds, Contemporary Math. 44 (1985), 157-177.
- [8] PEZZANA, M.: Sulla struttura topologica delle varieta' complette, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 269-277.
- [9] VINCE, A.: n-Graphs, Discrete Math. 72 (1988), 367-380.