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Abstract: Here we give upper bounds for the degrees of generators of the

homogeneous ideal of a suitable unreduced scheme Z ⊂ P n. Here we take as

Z a disjoint union of fat points or of multiple structures on linear subspaces

or we take as Zred a subscheme of a smooth curve or a scroll.

The actors in this paper are unreduced subschemes (or ”fatten-
ing”) of P n with connected components which are fattening of very
simple building blocks: points or rational normal curves or linear spaces.
For these subschemes of P n in this paper we consider the postulation
(i.e. the Hilbert function), the degree of the generators of the ho-
mogeneous ideal and of higher syzygies. Most of the methods used
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are refinements of [5] (with [8] and [13] very essential here and for
[5]).

Section 0 contains basic notations, background material and a few
conventions which we will use. Section 1 contains the general set up
needed to handle the minimal free resolution of fat points with sup-
port contained in a fixed subscheme of P n. In Section 2 we consider
as 0-dimensional subschemes the curvilinear ones (i.e. the one with
Zariski tangent space of dimension ≤ 1 at each point of their sup-
port) and some fattening of them; these unreduced schemes are the
easiest ones to handle and obtain, say, bounds on their postulation.
This section depends heavily on the proofs in [8] and [13]. Here we
stress also the interest of fattening of higher dimensional disconnected
schemes.

In Section 3 we prove upper bounds for the regularity index of
fattening of disjoint union of certain positive dimensional subvarieties
of P n, i.e. linear subspaces (see Th. 0.1 stated below), lines (see Th. 3.1)
and rational normal curves (see Th. 3.2).

Then in Section 4 we consider the case in which the support of the
fat points is on a rational normal curve and (very briefly) the case in
which it is on an elliptic linearly normal curve (see 4.9 and Prop. 4.10).
In 4.11 and Prop. 4.12 we consider briefly the case of fat points with
support on a rational norinal scroll (which may be singular, i.e. a cone
over a lower dimensional rational normal scroll).

In Section 5 we give a very general result on the behaviour of the
cohomology of unreduced 0-dimensional subschemes of P n with support
on a fixed curve.

Just to give to the reader a feeling of the results proven in this
paper, now we give the statement of the following theorem which will be
proved in Section 3; in the body of the paper the reader will find more
details on the notions appearing in its statement.
Theorem 0.1. Fix s disjoint proper linear subspaces Ai 1 ≤ i ≤
≤ s, of P n of any dimension, linear subspaces (of any dimension) Mi,
1 ≤ i ≤ s with Ai ⊆ Mi for every i, integers mi, 1 ≤ i ≤ s with
mi > 0 and let U be the union of the (mi − 1)-th infinitesimal neigh-
borhoods of Ai in Mi. Set m := max{mi}. Then h1(P n, IU (t)) = 0
for every integer t ≥ nm + m1 + · · · + ms. Furthermore, the homo-
geneous ideal of U is generated by forms of degree ≤ nm + m1 + . . .
· · ·+ ms + 1.
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Here are a few motivations. Unreduced schemes arise often and
for several different purposes. Fat points in P n arise in the problem
of interpolation for homogeneous polynomials; if the fat points are fat-
tening in natural varieties (e.g. scrolls) this is related to the inter-
polation of polynomials modulo interesting ideals and (in the case of
rational scrolls) to the interpolation of weighted homogeneous polyno-
mials. Unreduced subschemes (and very often disjoint union or gen-
eral disjoint union) are used (thanks to Serre correspondence) to the
construction of bundles and the cohomological properties of the unre-
duced schemes reflects cohomological properties (and even the stability)
of the corresponding bundles. Unreduced schemes arise as limits of a
flat family of reduced ones and by semicontinuity cohomological prop-
erties of the unreduced schemes give cohomological conditions of the
general member of the flat family; from this point of view, unreduced
structures with support a curve arise often (e.g. ribbons) and their
0-dimensional subschemes are linked to the cohomolgy of their line bun-
dles. For an example in which disjoint unions of lines arise as a technical
tool (and a partial motivation for Section 3) see [7] and several related
papers.

0. Notations and preliminaries

We work over an algebraically closed field K ; we assume
char (K) = 0 because some results (e.g. on the conormal bundle of
a linearly normal elliptic curve) are not true (in the way we will state
them) in positive characteristic. Let R := K[x0, . . . , xn] =

⊕
t≥0

Rt be the

homogeneous coordinate ring of P n. Set P := P n; let Ωi be the sheaf
of alternating i-differential forms on P . If I is a homogeneous ideal of
R, r(I) will denote its regularity index; recall that if A :=

⊕
t≥0

At :=

R/I :=
⊕
t≥0

(Rt/It) has dimension 0, then r(I) is the first integer u such

that Iu = Ru, while if A has dimension 1 r(I) is the first integer such
dim (A) reaches its maximum (which is the multiplicity of A). If Z is
a subscheme of P n, I(Z) will denote its saturated homogeneous ideal;
set r(Z) := r(I(Z)). For a closed subscheme B of a scheme A, let IB,A

be the ideal sheaf of B as subscheme of A; if A is an ambient projective
space we will often write IB instead of IB,A. For all non negative
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integers a, b, set ((a; b)) := a!/(b!(a− b)!) (the binomial coefficient).

1. General set up

Here we explain the simplest case (the only one used in this paper)
of the so called Horace’ method. For recent expositions of the method
and its use see e.g. [2], Prop. 1.6, and [1].
Remark 1.1. (Horace’ method). Let A be a projective scheme, B a
closed subscheme of A, L a line bundle on A and Z an effective Cartier
divisor of A (even not reduced). Set B′ := Z ∩ B and let B′′ be the
residual scheme of B with respect to Z. By the exact sequence
(1) 0 → L(−Z)⊗ IB′′,A → L⊗ IB,A → (L|Z)⊗ IB′,Z → 0
to prove that H1(A, L ⊗ IB,A) = 0 it is sufficient to prove that
H1(A,L(−Z)⊗ IB′′,A) = H1(Z, (L|Z)⊗ IB′,Z) = 0.

For later sections we need more notations. If t and j are integers
with j > 0 and B is a closed subscheme of the subscheme A of P := P n,
let

rA,B,j(t) : H0(A, (Ωj |A)⊗OA(t)) → H0(B, (Ωj |B)⊗OB(t))
be the restriction map; if A = P , set rB,j(t) := rP ,B,j(t); set rA,B(t) :
:= rA,B,0(t). If C ⊂ P n is a reduced scheme, kC will be the closed
subscheme of P with ideal sheaf (IC)k; hence (k+1)C := C(k) (the kth -
infinitesimal neighborhood of C in P n). For all non negative integers
j, k we have the following exact sequence:

(2)
0 → (Ωj |A)⊗ Ik/Ik+1(t) → (Ωj |(k + 1)C)⊗O(k+1)C(t) →
→ (Ωj |kC)⊗OkC(t) → 0.

If C is locally a complete intersection we have Ik/Ik+1 ' Sk(I|I2) (a
suitable symmetric power of the conormal bundle).

From now on in this section we assume that C is a curve. Fix a
point P ∈ Creg and take formal coordinates in P n around P in such
a way that C has equation u1 = u2 = · · · = un−1 = 0 near P and
P has equation u = u1 = u2 = · · · = un−1 = 0. Set a(x, k) :=
:= length (xP ∩ kC); note that a(x, k) depends only on x and k. If
x ≤ k, we have xP ⊆ kC; thus a(x, k) = ((x + n − 1; n)) if x ≤ k. If
x ≥ k, a(x, k) is given by the sum of the number of monomials in n
variables u, u1, u2, . . . , un−1 of total degree ≤ k − 1 and the monomials
of total degree ≤ x− 1 whose total degree with respect to the last n− 1
variables is k − 1; hence
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(3) a(x, k) = ((n+k−1; n))+(x−1−k)((n+k−2; n−1)) if x ≥ k.

If Z = m1P1 + · · ·+ msPs, set a(Z, k) :=
∑

i a(mi, k).

2. Curvilinear subschemes

The unifying theme of this section is the use of the methods and
ideas contained in [8] and [13]. First we give a lemma (see 2.1) which
extends the key elementary lemmas in [8] and [13] from bounds on the
regularity index to bounds on the postulation. Then (see Prop. 2.3)
we consider the same matter for the minimal degree of a set of gener-
ators of the homogeneous ideal. Here we stress the fact that the same
considerations work for disjoint union of unreduced schemes of any di-
mension (see Remark 2.2 and Th. 2.3). Then we consider curvilinear
0-dimensional schemes (see Th. 2.4). The proof of Th. 2.4 gives easily
results for fattening of curvilinear 0-dimensional schemes; toy examples
for which we do not have any applications are available from the authors.
Lemma 2.1. Fix an ideal J of finite colength in R and a point P
not on the support of R/J and let W be the homogeneous ideal of a
scheme supported at P . Set d := colenght (W ) and a := r(R/W ). Fix
an integer t ≥ a− 1. Then:

(a) r(R/J ∩W ) = max{a, r(R/J), r(R/(J + W ))};
(b) r(R/(J + W )) ≤ t if and only if there exist d forms of degree

t in J whose residue classes in R/W are linearly independent;
(c) fix an integer w > 0; assume the existence of a form of degree

w in J not vanishing on P ; then r(R/(J + W )) ≤ w + a.
Proof. The reader can easily check that, just changing a few notations,
the proofs of all parts are respectively the proof of [8], Lemma 1, [13],
Lemma 1.3, [13], Cor. 1.4. ♦

Now we show how to use the methods of [8] and [13] to handle the
postulation of disjoint union of unreduced schemes, even if the schemes
have positive dimension; the same remarks give also bounds for the
generators of the homogeneous ideal (see Prop. 2.3).

Here J and W will be homogeneous ideals of R such that J +
+ W has as radical the maximal irrelevant ideal of R; set I := J ∩W .
When J and W are saturated ideals, they are the ideal associated to
disjoint subschemes (say J := I(A) and W := I(B)) of P n and then
I is the saturated ideal I(A ∪ B) associated to the union of these two
subschemes.



136 E. Ballico and A. Cossidente

Remark 2.2. Fix an integer t ≥ 0. Consider the exact sequence of
finite dimensional vector spaces:
(4) 0 → It → Jt ⊕Wt → (J + W )t → 0.
Thus for the corresponding Hilbert functions we have:
(5) HR/I(t) = HR/J (t) + HR/W (t)− dim (Rt/(J + W )t).
In particular if J = I(A), W = I(B), we have:
(6) h1(IA∪B(t)) ≤ h1(IA(t)) + h1(IB(t)) + dim (Rt/(J + W )t).

Here we give the bound for the degree of the generators of the
homogeneous ideal I.
Proposition 2.3. Fix an integer t ≥ 2 and assume that Jt+1 and
Wt+1 are generated by Jt and Wt and that (J + W )t−1 = Rt−1. Then
It+1 is generated by It.
Proof. Choose homogeneous coordinates xi. Fix f ∈ It+1. By assump-
tion there exist gi ∈ Jt and hi ∈ Wt with

∑
i xigi =

∑
i xihi = f . Since∑

i xi(gi − hi) = 0, by the Koszul complex (which is a resolution of
the empty subscheme) there are forms mij with mii = 0, mij = −mji

and such that gi − hi =
∑

xjmij . Since (J + W )t−1 = Rt−1, we may
write mij = aij + wij with aij ∈ Jt−1, wij ∈ Wt−1 for i < j and set
aij = −aji, aii = 0, wji = −wij , wii = 0. Then fi := gi −

∑
j xjaij =

= hi −
∑

j xjwij ∈ Jt ∩Wt is such that
∑

i xifi = f . ♦
We recall that a 0-dimensional scheme Z is called curvilinear if

for every x ∈ Zred the Zariski tangent space TxZ has dimension ≤ 1;
equivalently, Z is curvilinear if and only if it is contained in a smooth
(affine) curve; if Z is a curvilinear subscheme of P , then Z is even
contained in a smooth projective curve contained in P . We will say
that the curvilinear scheme Z is of type C if C is a curve with Z ⊂ Creg

(hence we assume only that C is smooth near Z). Now we consider
certain fattening of a curvilinear scheme. Fix a curvilinear scheme X of
type C and a hypersurface M with X = C ∩M ; M exists because X
is a Cartier divisor on C; set W := kC ∩M ; W will be called the k-th
fattening of X along C and M ; usually we will use kX to denote such
a scheme W (when C is clear and the choice of M does not matter in
the statements/proofs).
Theorem 2.4. Fix integers n, s, m(i), 1 ≤ i ≤ s, with m(1) ≥ . . . ≥
≥ m(s) > 0, and let w be the first positive integer with ((n + w; n)) >
> m(2) + · · ·+ m(s). Set a := ((n + w; n))− (m(2) + · · ·+ m(s))− 1;
let b′ be the maximal integer with ((n + b′ − 1;n)) ≤ a and set b :=
:= min(b′, [m(1)/2]). Then for the union, Z, of s general curvilinear
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schemes Z(i) of P n, 1 ≤ i ≤ s, with length (Z(i)) = m(i), we have
r(Z) ≤ w + m(1)− 1− b.
Proof. (a) Fix P ∈ P n and take a general hypersurface, Q, of degree
w with a point of multiplicity b at P . Let Z ′ be the general union
of s − 1 general curvilinear subschemes Z(i), 2 ≤ i ≤ s, of Q with
length (Z(i)) = m(i) for all i.

(b) By the condition on the integer a, for any union, Z ′′, of s− 1
curvilinear subschemes Z(i), 2 ≤ i ≤ s, of P n with length (Z ′′(i)) =
= m(i) for all i, there is a degree w hypersurface, Q′′, containing
them and with a point of multiplicity b at P . Hence Z ′ may be con-
sidered as a general union of s − 1 general curvilinear subschemes of
P n.

(c) We take P as support of Z(1) and assume that Z(1) has tan-
gent not in the tangent cone of Q at P . Let m be the maximal ideal of
Z(1). The condition on the tangent line is equivalent to the condition
that for any formal smooth curve F in P n around P containing Z(1),
the intersection multiplicity of F and Q is b, i.e. Q cuts the Cartier
divisor bP on F . This implies that the product of the equation of Q and
all forms of degree m(1) − 1 − b generates the kernel of the surjection
t(b) : OZ(1) → OZ(1)/mb; vice versa, any such form is contained in
ker(t(b)).

(d) By part (b) it is easy to check that we may assume the existence
of a degree w hypersurface, U , containing Z ′ but not P . Hence the space
of forms which are the product of the equation of U and the forms of
degree m(1)− b− 1 are sent by the quotient map t(b) surjectively onto
OZ(1)/mb. By part (c), we conclude using induction on s (as in [13],
proof of Th. 2.4). ♦

Note that we have b > 0 if and only if a > 0; if a = 0, Th. 2.4 is
not interesting since it follows easily from [8], Th. 6.

3. Fattening of a disjoint union of rational normal
curves and of linear spaces

The aim of this section is the proof of upper bounds for the reg-
ularity index of fattening of suitable disjoint unions of suitable posi-
tive dimensional subvarieties of P n, i.e. linear subspaces for Th. 0.1,
lines for Th. 3.1 and rational normal curves for Th. 3.2. Note that
the schemes called U in the statements of Ths. 0.1, 3.1 and 3.2 have
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usually degree much bigger than the upper bound obtained for the
regularity index. Now we will prove Th. 0.1 stated in the introduc-
tion.
Proof of Theorem 0.1. We divide the proof into 3 parts.

Part (A) Fix an integer t ≥ nm+m1 + · · ·+ms. For the vanishing
of the cohomology groups we will use induction on n. If n = 1 the result
is obvious. If n > 1, take a hyperplane H containing a linear subspace
Ai (say A1) appearing with multiplicity m and containing Mi unless
Mi = P n.

Part (B) Let mH be the degree m hypersurface with support H.
Set U ′′ := U ∩mH and let U ′ be the residual scheme of U with respect
to mH. By Horace’ method (Remark 1.1) it is sufficient to prove that
H1(IU ′(t − m)) = H1(mH, IU ′′,mH(t)) = 0. The former cohomology
group vanishes because U ′∩A1 = ∅. To prove that the latter cohomology
group vanishes we will use the peeling method, which we will explain
now. Note that for all integers k > 0 we have I(k−1)H,kH ' (I(k−1)H)/
/(IkH) ' OH(−k). For all integers k and w with 1 ≤ k ≤ m consider
the exact sequences

(7)
0 → I(U ′′|H),H(w − k) → I(U ′′|kH),kH(w) →
→ I(U ′′|(k−1)H),(k−1)H(w) → 0.

By the exact sequences (7) we are reduced to check that
H1(H, I(U ′′|H),H(t−m)) = 0. This is true by the inductive assumption
on n and the fact that on H we apply this inductive statement with the
addendum “(n− 1)m” instead of “nm”.

Part (C) The assertion on the homogeneous ideal follows (by in-
duction on n) from the vanishing of cohomology just proved (used for all
integers n′ ≤ n) as in the usual inductive proof of Castelnuovo–Mumford
Lemma ([11]). ♦

There are several numerical data on dim (Ai) such that the induc-
tive proof of Th. 0.1 works for these data with a better bound. Here we
consider the case in which dim (Ai) ≤ 1 for every i (disjoint fat lines
plus possibly disjoint fat points) and there is a very strong linear general
position assumption.
Theorem 3.1. Fix s disjoint linear subspaces Ai, I ≤ i ≤ s, of P n

with dim (Ai) < 1, linear subspaces (of any dimension) Mi, 1 ≤ i ≤ s,
with Ai ⊆ Mi for every i, integers mi, 1 ≤ i ≤ s, with mi > 0, and let
U be the union of the (mi − 1)-th infinitesimal neighborhoods of Ai in
Mi. Assume s ≥ n + 2. Assume that for all non negative integers u, v
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the union of u components of Ured of dimension 0 and v components
of Ured of dimension 1 spans a linear space of dimension min(n, u +
+ 2v − 1). Set µ := m1 + · · ·+ ms. Then h1(P n, IU (t)) = 0 for every
integer t ≥ µ. Furthermore, the homogeneous ideal of U is generated
by forms of degree ≤ µ + 1.
Proof. The last assertion follows from the first one as in part (C) of the
proof of Th. 0.1. For the first part, we use again induction on n. Set m :
:= max{mi}. Take again a hyperplane H containing a linear subspace
Ai appearing with multiplicity m and containing Mi unless Mi = P n.
Then repeat part (B) of the proof of Th. 0.1. Now the inductive game
with H (and integers t′ ≥ t−m + 1) works essentially because H does
not contains Ured ; if it does not contain a zero dimensional Aj , no
further discussion. Assume H is compelled to contains all Ai’s with
dim (Ai) = 0 (if any). Here we use that a fat line with support not in
H intersects H in a fat point. Let j be the number of lines of Ured

contained in H. Hence H ∩ U is the union of j fat lines and s − j fat
points. By the linear normality assumption we have 2j+(s−j) ≤ n+1,
contradicting the assumption on s. ♦
Theorem 3.2. Fix integers s ≥ n, mi > 0, 1 ≤ i ≤ s, proper linear
subspaces Ni and Mi, 1 ≤ i ≤ s, of P n with Ni ⊆ Mi, rational normal
curves Ci of Ni (hence deg(Ci) = dim (Ni)) with Ci ∩ Cj = ∅ if i 6= j.
Fix integers mi, 1 ≤ i ≤ s, with m1 ≥ m2 ≥ . . . ≥ ms > 0. Set ei = 1 if
deg(Ci) ≥ 2, ei = 2 if Ci is a line. Let U be the union of all (mi−1)-th
infinitesimal neighborhoods Zi of Ci in Mi. Set δ := 2 + 3m1 + e1m1 +
+· · ·+esms. Assume that for a general hyperplane H the set H∩Ured is
in linear general position; assume that for every index i with Ni 6= P n

and for a general hyperplane H(i) containing Ni the set H(i)∩ (Ured \
\ Ci) is finite and in general linear position. Then H1(P n, IU (t)) = 0
for every integer t ≥ δ. Furthermore the homogeneous ideal I(U) of U
is generated by forms of degree ≤ δ + 1.
Proof. The proof is by triple induction on n, δ and deg(Ured ) (the
starting case being n = 1, hence trivial). Fix an integer t ≥ δ. The
proof is divided into 6 steps. We assume the case s = 1 which will be
considered in step (6).

(1) Let Π be a projective space and Y a hyperplane of Π. Let
D be a rational normal curve of Π. By [6], Prop. 2.5, or [7], Th. 0,
there is a family {ht}t∈∆\{o}, ∆ smooth affine integral curve with o ∈
∈ ∆, of projective transformations of Π such that the family of projec-
tively equivalent curves {ht(D)} has as flat limit at o the curve J ∪K
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with K rational normal curve in Y , J a line not in Y and J ∩ K 6=
6= ∅.

(2) Take the notations of step (1) and fix an integer r > 0. In
this step we will check that the family {ht(rD)} has Q := rJ ∪ rK as
flat limit. Since the Hilbert scheme Hilb (Π) of Π is proper, and ∆ is a
smooth curve, there is a flat limit, Q′′, and, taking hyperplane sections
(and help from the proof of the result stated as step (1), e.g. the picture
in [6], or [3], §7, or [7], Th. 0), we see easily that Q′′ is the scheme
union of Q with a nilpotent with support on {P} := J ∩ K. Hence
([10], Th. III.9.9) it is sufficient to check that Q and Q′′ have the same
Hilbert polynomial, pQ and pQ′′ := prD. Since the general hyperplane
sections of Q and Q′′ are projectively equivalent, pQ−prD is a constant.
It is easy to check that pQ(0) = 1 and prD(0) = 1. Hence pQ = pQ′′ , as
wanted.

(3) Assume there is an integer u ≤ s such that Nu 6= P n. Take
a general hyperplane H containing Nu. We apply Horace’ method (Re-
mark 1.1) with respect to muH. The residual scheme, U ′′, of U with
respect to muH is U \muCu. Hence by the inductive assumption on δ
we have h1(P n, IU ′′(t−mu)) = 0. Set U ′ := U∩muH. Note that U∩H
is the disjoint union, T , of Cu and U ′′ ∩ H and that we assumed that
the points of (U ′′∩H)red are in linear general position. To conclude by
Horace’ method it is sufficient to prove that H1(muH, Iu′,muH(t)) = 0.
Exactly as in part (B) of the proof of Th. 0.1, by the peeling method
this vanishing holds if H1(H, IU∩H,H(b)) = 0 for every b ≥ t−mu. Fix
such an integer b. Take a hyperplane M of H. If Nu 6= H we take M
containing Nu. Note that the residual scheme of U ′ in H with respect to
NuM consists of fat points with support in linear general position and
that ejdim (H) ≥ deg(Cj) for every j. Now we apply Horace’ method
(Remark 1.1) with H as ambient space and with M as divisor. To con-
clude it is sufficient to apply [8], Th. 6, to the residual scheme of U ∩H
with respect to muM and the peeling method as in part (B) of the proof
of Th. 0.1.

(4) Now assume Nu = H. We take as M a general hyperplane of
H. By steps (1) and (2) there is a flat family of projective transforma-
tions {ht} of H such that {ht(muCu)} has as flat limit a multiple of the
union of a rational normal curve K of M and a line. By the properness
of the Hilbert scheme, the generality of H and the proof of the result
stated as step (1) (see in particular the picture in [6] and/or [3], §7,
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and [7], Th. 0) we may assume that the family {ht((U ′′ \ Cu) ∩ H)}
has a limit formed by fat points with support in linear general position
and disjoint from M and with the same multiplicities as (U ′′ \Cu)∩H.
By semicontinuity it is sufficient to check the vanishing for the limit
scheme. We apply again Horace and the peeling method as in step (4).
Now the only difference is that as residual scheme we have also a line
with multiplicity mu. We may apply induction on the degree by the
choice of the integer eu.

(5) Now we assume Ni = P n for every integer i. We apply steps
(1) and (2) to m1C1 as in step (4) and then repeat the same proof.

(6) Here we consider the case s = 1. The case of a multiple mD
(i.e. the vanishing of H1(ImD(t)) for every t ≥ 2m − 1) of a rational
normal curve was proven in [5], 3.4; alternatively a proof can easily be
given using steps (1), (2) and the proof of step (4). The same vanishing
for the general case with arbitrary dim (N1) and dim (M1) may easily
be proved using steps (1), (2) and the proof of step (4). ♦

4. Fat points on linearly normal smooth rational or
elliptic curves

In this section we take as curve either a rational normal curve of
P n, D, or (but only briefly in 4.9 and 4.10) a linearly normal elliptic
curve, E. At the end of the section we consider briefly the case in which
the supporting variety is a higher dimensional rational normal scroll
(see 4.11 and 4.12). Let rmD,kD,j(t) and rmD,kD(t) be the restriction
maps. Recall (see e.g. [12]) that (in any characteristic) I/I2 is the direct
sum of n− 1 line bundles of degree −n− 2. Thus Is/Is+1 ' Ss(I|I2)
is isomorphic to the direct sum of ((n + s− 2; s)) line bundles of degree
−2s − ns on P 1. Recall (see e.g. [4], Lemma 1.3) that Ω1|D is the
direct sum of n line bundles of degree −n− 1. Hence Ωj |D is the direct
sum of ((n; j)) line bundles of degree −j(n + 1). Hence from (2) and
the cohomology of line bundles on P 1 we obtain at once the following 2
lemmas.
Lemma 4.1. For every m ≥ 2 and j ≥ 0 we have
χ(OmD ⊗ Ωj) = χ(O(m−1)D ⊗ Ωj)−

− ((n + m− 2; m)) · (m(n + 2) + j(n + 1)− 1)((n; j)).

Lemma 4.2. If j ≥ 0, m > k ≥ 1 and tn ≥ m(n + 2) + j(n + 1)− 1,
then the restriction map rmD,kD,j(t) is surjective.
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It is known ([5], Prop. 3.4), that mD is 2m-regular; the following
more precise vanishings are known. We have (see step (6) of the proof
of Th. 3.2) h1(ImD(t)) = 0 for every t ≥ 2m; we have (see the exact
sequences (2) for j = 0) h2(ImD(t)) = h1(mD, OmD(t)) = 0 if tn ≥
≥ m(n−1)−1; we have hu(ImD(t)) = hu(P n,O(t)) = 0 for all integers
u, t with u ≥ 3, t ≥ −n. By the interpretation via Koszul cohomology
of the minimal free resolution and the regularity index we have the
following result which in case j = 0 was the first part of the statement
of [5] , Prop. 3.4.
Proposition 4.3. The restriction map

rmD,j(t) : H0(P n, OP (t)⊗ Ωj) → H0(mD,OmD(t)⊗ Ωj)
is surjective for every t ≥ 2m + j.

We fix Z := m1P1 + · · ·+ msPs with m1 ≥ . . . ≥ ms and Zred ⊂
⊂ D; set m := m1. Set Z(k) := Z ∩ (kD). The next result follows from
Prop. 4.3 and the exact sequence (2).
Proposition 4.4. If k < m and t ≥ 2k + 2 + j, we have:

h1(P n, IZ(k+1)(t)⊗ Ωj) = h1(P n, IZ(k)(t)⊗ Ωj)+

+max(0, ((n; j))(jn + j − nt− 1 + a(Z, k + 1)−
−a(Z, k)) · ((n + k; n− 1))).

Applying m− k times the previous result we obtain the following
two propositions.
Proposition 4.5. If k < m and t ≥ 2m + j, we have:

h1(P n, IZ(m)(t)⊗ Ωj) = h1(P n, IZ(k)(t)⊗ Ωj)+

+
∑

k≤a<m

max(0, ((n; j))(jn + j − nt− 1 + a(Z, k + 1)−

−a(Z, k)) · ((n + a; n− 1))).

Proposition 4.6. Assume 1 < t < 2m − 2 + j and take k < m with
2k − 1 ≤ t ≤ 2k. Then we have:

h1(P n, IZ(k)(t)⊗ Ωj)+

+
∑

k≤a<m

max(0, ((n; j))(jn + j − nt− 1 + a(Z, k + 1)−

−a(Z, k)) · ((n + a;n− 1))) ≤
≤ h1(P n, IZ(t)) ≤ h1(P n, IZ(k)(t)⊗ Ωj)+
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+
∑

k≤a<m

max(0, ((n; j))(jn + j − nt− 1 + a(Z, k + 1)−

−a(Z, k)) · ((n + a; n− 1))) + dim (coker (rmD,j(t))).

Remark 4.7. Note that using inductively Prop. 4.4 we get the value
of h1(P n, IZ(k)(t)⊗ Ωj) in Prop. 4.5.
Remark 4.8. If t ≥ 2m + j with m ≥ 2, we have tn ≥ 2nm− n + j +
+ 1. Hence by 4.3 and 4.5 h0(P n, IZ(t)⊗Ωj) is known, computed and
independent of the positions of the points Pi on D.

4.9. Here we consider the case of an elliptic normal curve E.
The discussion made in [5], §4, works without any change, thanks to
the general set up, because we know exactly Ω1|E. Indeed, by [9],
Prop. 3.2, Ω1|E is stable and hence it is the unique rank n stable vector
bundle on E with OE(−n − 1) as determinant. Since Ω1|E is known
(and we have char (K) = 0), the bundle Ωj |E is in principle computable
using the known multiplicative structure of the ring of vector bundles
on E. However, often life is easier; indeed by a very particular case
of [9], Corollary in the introduction with i = 0, this bundle is semistable
with rank ((n; j)) and determinant OE(−(n + 1)((n; j))− (n + 1)((n−
− 1; j − 1))); if the integers rank (Ωj |E) and deg(Ωj |E) are coprime,
this forces Ωj |E to be indecomposable, hence uniquely determined by
Atiyah’s classification of vector bundles on an elliptic curve. Using this
information one obtains upper and lower bounds for h1(IZ′(k+1)(t) ⊗
⊗ Ωj) − h1(IZ′(k)(t) ⊗ Ωj) and all (k, t) with k < m and t ≥ 2k + 1.
To pass from the cohomology of IZ,mE(t) ⊗ Ωj to the cohomology of
IZ,P (t)⊗Ωj we need a good bound (or the exact value) for the regularity
index of mE; everything would be obvious if we know the minimal free
resolution of mE. If E has general moduli, this was obtained in the
proof of [5], Prop. 4.2. Hence we have the following result
Proposition 4.10. Let E∧ be an elliptic curve with general moduli.
For all integers n, m, t with n ≥ 2, m ≥ 2, t ≥ 2m− 1 + j, and every
elliptic normal curve E ⊂ P n with E ' E∧ (as abstract curves) the
restriction map rmE,j(t) is surjective.

Thus we have a good understanding of the minimal free resolution
of a union X of fat points of order ≤ m and supported by E∧ in the
level t ≥ 2m+1. If (for fixed m) length (X) is sufficiently high, then all
generators of I(X) will appear in degree ≥ 2m− 1. Hence in this case
our understanding of the minimal free resolution would be quite good.
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4.11. We are interested also in the case in which the fat points
are supported on a higher dimensional rational normal scroll, S, say of
dimension u (hence of degree n− u + 1). We do not exclude the case in
which S is singular, i.e. a cone over a lower dimensional rational normal
scroll, but in this case we assume that no fat point is supported on the
linear space Sing (S). Call V ′′ the cone of dimension u over a rational
normal curve (hence with as vertex a projective space of dimension u−
−2). There is an integral family of projective transformations {gt} such
that {gt(S)} has V ′′ as flat limit. Hence, as in steps (1) and (2) of the
proof of Prop. 3.2 by semicontinuity we get the following result (with
obvious notations).
Proposition 4.12. The restriction map rmS,j(t) is surjective for every
t ≥ 2m + j.

The postulation of fat points supported on S depends very much
from their position (after all, S contains curves of arbitrarily large de-
gree).

5. General nonsense bounds for the cohomology

The aim of this section is to show why the methods of [5] allow
one to obtain a very general result on the possible behaviour of the co-
homology of unreduced 0-dimensional subschemes of P n with support
on a fixed curve. The result (i.e. Th. 5.1) is very general, but also
very vague (just a simple application of Serre Theorem B and semicon-
tinuity). However the method of proof gives obviously that, if we have
enough informations on the curve and the “numerical data” (defined
below), in the statement of Th. 5.1 we may give explicit (although not
sharp) bounds.

Fix an integral variety C (say a curve) and a finite set S ⊂ Creg ;
let Y be a scheme with S = Yred ; the numerical data of Y (with re-
spect to C) is just the sequence of all integers length (OY ∩ Ik

C); if S is
not connected, this sequence should be called the total numerical data
to distinguish it from the set of all numerical data of the connected
components of Y .
Theorem 5.1. Fix an integer m > 0 and an integral curve C of P n.
Then there exists an integer u such that for all total numerical data
of multiplicity at most m with support on C, and for every pair of 0-
dimensional schemes, X and W , supported on Creg and with that total
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numerical data, the cohomology of IX(t) and IW (t) is the same except
at most for u integers t.
Proof. First fix an integer, a, (depending only on C and m) such that
for every integer k with 1 ≤ k ≤ m, the scheme kC is a-regular. Now
we have just to use the exact sequences (2) for j = 0, and the peel-
ing method explained in part (B) of the proof of Th. 0.1 as in Sec-
tion 3. ♦

Note that in the statement of Th. 5.1 we required only that X and
W have the same total numerical data, independently on the number
and the numerical data of the connected components of X and W (not
only independently of the position of the supports of X and W on Creg ).
It is easy to modify Th. 5.1 and its proof to avoid the condition that the
support of X and W is disjoint from the singular locus of C. We do not
claim that in the statement of Th. 5.1 the ≤ u “exceptional integers t”
are consecutive or at least that the difference between the minimal and
the maximal one is bounded. Indeed the proof gives only that there are
at most m intervals of possible exceptional integers and each of these
intervals has bounded measure, but the distribution of the intervals may,
a priori, depends on the choice not only of the total numerical data, but
also of the numerical data of the 0-dimensional schemes.
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