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Abstract: The connection between the velocity and Coriolis acceleration of
3R robot-manipulators is described. It is shown that the velocity and Coriolis
quadrics have the same axes but of different length. Classification of Coriolis
quadratical surfaces is given.

1. Introduction

This paper is a continuation of [3],where the basic properties of the
velocity and and acceleration fields of 3R robot-manipulators have been
described. At the beginning we shall briefly summarize denotations and
basic properties of velocity and acceleration operators from [3].

The geometry of robot-manipulators with p-degrees of freedom is
determined by the product of p-revolutions or translations given by axes
Xi,...,X,. We suppose that axes X;,... , X, are determined by their
Pliicker coordinates X; = (#;;¢:), 1 =1,...,p.

Remark. For simplicity reasons we consider only rotational axes, for
prismatic joints we have to change all formulas accordingly.

The motion of the end-effector of such a robot-manipulator is ex-
pressed by the matrix

91,02, 0p) =11(01) r2(w2) ... 7p(ep),
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where r;(¢;) is the matrix of the revolution around X;. If ¢; = ¢,(t) are
functions of time we obtain a one parametric motion of the end-effector,

(8) = ra(n(8) ra(a(t). .y () 7
Trajectory of a point A of the end-effector space is A(t) = ¢g(¢)A. Let

us denote () the velocity (acceleration) operator of g(t), respectively.
We have

P
Q=g'g7", 0=0'"+0 Q=) Y.
=1
where Y; is the instantaneous position of :—th axis and v; is the angular
velocity of ri(@i(t));v; = d(;i". For the derivative of Q we have

! - ! - dv;
Q' =>"Y v+ Zm%.
i—1 i=1

We can split the acceleration operator into three parts:
a) Q2 is the centrifugal acceleration;

P
b) > Yie; is the Euler acceleration, where ¢ = ddzi is the angular
i—1

acceleration of r;(¢;(t));

P P
¢c) Y Y'vi= > Y;xY;wvv;is the Coriolis acceleration where Y; x
=1 i<j=1
% Y; denotes the cross product of Pliicker coordinates of Y; with
Y;.

2. Velocity and Coriolis quadrics

In the following we shall concentrate on velocity and accelera-
tion properties of 3R robot-manipulators. We shall show that both
velocity and Coriolis acceleration operators are connected with quadrat-
ical surfaces. Let us have a 3R robot-manipulator determined by axes
X1, X5, X3. Let us consider an instantaneous position Y7, Y5, Y3 of these
axes. Then the velocity operator €2 for this configuration is given by

(1) Q=w1Y] +w Yy +wsls
Coriolis acceleration C' is given by the formula
(2) C = Y1 X nglwg + Y1 X Y3u)1u)3 + Y2 X Y3u)2u)3,

Y; x Y; is the cross product of Plicker coordinates which is defined as
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follows. Denote Y; = (24;4;),Y; = (Z5;v;). Then
(Ti;95) < (T35 95) = (Fi X T T X Y5 + ¥ X Tj),

see [2]. We can see that velocity operator is always a linear combination
of Y1,Y5,Y3;. This shows that we have to work in the 6-dimensional
vector space of screws. It is the vector space of all pairs (7; ¢) of ordinary
vectors of the Euclidean space Es. Vg contains Pliicker coordinates
of all straight lines of E3. Their image is called Klein’s quadratical
hypersurface K.

Let us assume that the direction vectors 'y, 72,73 of Y7,Y5, Y3
are independent. All velocity operators ) for the given configuration
Y1,Y5,Y; generate a 3-dimensional subspace V5 of V5. The intersection
of I with V5 is a ruled hyperboloid @,. (We know that it contains three
straight lines with independent directions.) @, is connected with the
velocity operator and it is uniquely determined by the instantaneous
configuration Y7,Y5,Y3 of axes Xi, X5, X3 of the robot-manipulator.
We shall call it velocity quadrics.

We have similar situation with Coriolis acceleration. According

to (2) the Coriolis acceleration operator C' for the given configuration
Y1,Y5,Y; lies in the 3-dimensional space W3 generated by screws Y7 X
X YQ,Yl X Y3,Y2 X Y3.
Remark. The difference between V3 and W3 1s that W3 need not con-
tain any straight lines and it is also not true that any screw of Wj is a
Coriolis acceleration. Let us denote ). the quadratical surface obtained
as the intersection of W3 with K, we shall call it Coriolis quadrics.

3. Properties of velocity and Coriolis quadrics

Lemma. The Coriolis quadrics Q). 1s independent of the choice of
screws Y1,Y5,Ys an the subspace Wi,
Proof. Wj is generated by independent screws Y7, Y3, Y3. Let us choose
another basis Y7,Y5,Ys of W3 by

Yi =anY1 +a2Ys + ai3Y3

Yo = an Y] + agYs + axsYs
Yy = a3 Y] +azeYs + azsYs,

where the determinant D = |a;;| # 0. The Coriolis quadrics corre-
sponding to Y7,Y3, Y3 is determined by screws Y7 x Y5, Y7 x Y3, Y, x V3.
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Computation yields
V) x Yo = b1 Y] x Yo +b12Y; x Y34+ b13Y x V3
Y] X Y3 = bo1 Y] x Yo + booYy X Y3+ by3Ys x V3
Vs x V3 = b31 Y7 x Yo + b3o¥y x Y3 + b33Ys x Vi,

where for instance by = aj1a22 — aj2a9; and similarly for the others.
Computation shows that for the determinant Dy =| b;; | we have Dy =

= D? and therefore Dy # 0. O

From Lemma we see that the conection between (), and Q). is
independent of the choice of screws which determine them. This means
that we can choose screws corresponding to axes of @},. We can prove
the following theorem.

Theorem. Let us suppose that (), has the equation

(3) 122 4 vay? Fv3z% 4 vivevy =0

in the canonical basis. Then Q. has the equation

(4) (vatvs)a® +(vs+v1)y® +(vatv1)z>+(va+vs5)(v3+v1 ) (v2+01) =0
in the same basis.

Proof. If @, is given by (3) in a Cartesian system of coordinates
{0, €1, é,03}, then the corresponding subspace Vi is determined by
screws Y; = (€;;v;€;), ¢ = 1,2,3. Then

Y1 x Yy = (€1;v1€1) X (€2;02€2) = (€35 (v1 + v2)es)
Y1 x Yy = (€1;01€1) x (€3;03€3) = (€23 (v1 + v3)é)

Yo x Yy = (€2;02€3) x (€3;03€3) = (€13 (v2 + v3)€1).
We see that ). has the canonical form in the same system of Cartesian
coordinates.

Corollary. Q. and ), have the same azxes. Length a, b, ¢ of axes
of these surfaces are not in general the same. Relation between those
quantities 18 following:

Qv: a=+/|vevg | b=+/|vivg| c=1+/]vivy]|
Qc: a=+/[(vs+o)(va+v1)| b=/ (v2+vs)(v1 +v2) |

c=/] (v2 4+ vs)(vs +01) | .
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4. Classification of velocity and Coriolis quadrics

Let us consider @, and Q. given by (3) and (4). We shall classify
them according to different values of vy, vq, v3.
1) vyvavs # 0. @, is a one sheet hyperboloid.
a) (v1+ov2)(va+v3)(vr+wvs) # 0,01 > ve > 0,03 < 0. Q. is one sheet
hyperboloid if v; < —v3 < vy or vy < v2 < —v3. Q. is empty if
—v3 < v < V2.
b) (v1 + v2)(v1 +v3) # 0,v2 + v3 = 0. Q. has the equation

(v1 —v2)y* + (v1 +v9)2? = 0.
According to the sign of v; + v9 and vy — vy we obtain two planes which
can be different, coinciding or imaginary.
¢) v1+v2 # 0,01 +v3 =vy +v3 =0, Q. is one plane.

2) vivy # 0,03 = 0. We may suppose v; > 0,v3 < 0 and @,
consists of two pencils of straight lines, two axes intersect. ). has the
equation

vex? +v1y? 4 (v1 + v2)2% + (v 4 v2)vive = 0.
If v1 +vy #0, Q. is one sheet hyperboloid and if v1 + v, = 0 we obtain
two pencils of straight lines.

3) The case vy = v3 = 0 was excluded.
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