CORRIGENDUM TO "PRODUCTS OF PSEUDORADIAL SPACES"

Franco Obersnel

Department of Mathematical Sciences, University of Trieste, Piazzale Europa 1, I-34100 Trieste, Italy

Gino Tironi

Department of Mathematical Sciences, University of Trieste, Piazzale Europa 1, I-34100 Trieste, Italy

Received June 1995

MSC 1991: 54 A 20, 54 A 25, 54 B 10

Keywords: Sequential spaces, pseudoradial, almost radial, semi-radial spaces. Products.

In our paper (Math. Pannonica 6/1 (1995), 29-38) the proofs of Ths. 3.2 and 3.3 are wrong. They should be substituted as follows; in order to make as little changes as possible Ths. 3.2 and 3.3 will be labeled 3.3 and 3.3', while the next Th. 3.2 is a proposition of independent interest.

Theorem 3.2. Let $(X_{\alpha})_{\alpha \in \omega_1}$ be a family of compact Hausdorff spaces and for each $\alpha \in \omega_1$ let $|X_{\alpha}| < 2^{\omega_2}$. Then every closed subset F of the cartesian product $\prod_{\alpha \in \omega_1} X_{\alpha}$ has a point p such that $\chi(p, F) \leq \omega_1$. **Proof.** Let F be a closed subset of $X = \prod_{\alpha \in \omega_1} X_{\alpha}$. Let $\pi_{\alpha}: X \to X_{\alpha}$ be the projection on the α -th factor of the product. Since $|X_0| < 2^{\omega_2}$, then, by the Čech – Pospišil theorem, there is a point $x_0 \in \pi_0(F) \subset X_0$ such that $\chi(x_0, \pi_0(F)) \leq \omega_1$. Let $F_1 = (\{x_0\} \times \prod_{1 \leq \alpha < \omega_1} X_{\alpha}) \cap F$. Clearly F_1 is a G_{ω_1} set in $F = F_0$ and there is $x_1 \in \pi_1(F_1) \subset X_1$ such that $\chi(x_1, \pi_1(F_1)) \leq \omega_1$.

Suppose we have found points and closed sets x_{γ} and F_{γ} , where $x_{\gamma} \in \pi_{\gamma}(F_{\gamma}) \subset X_{\gamma}$ such that F_{γ} is a G_{ω_1} subset of F for every $\gamma < \alpha$, $\alpha < \omega_1$ and $F_{\gamma} \subset F_{\gamma'}$ whenever $\gamma' \leq \gamma$. If α is limit, take $F_{\alpha} = \bigcap_{\gamma < \alpha} F_{\gamma}$. By compactness $F_{\alpha} \neq \emptyset$.

If $\alpha = \delta + 1$ define $F_{\alpha} = ((x_{\gamma})_{\gamma \leq \delta} \times \prod_{\alpha \leq \beta < \omega_1} X_{\beta}) \cap F$. In both cases F_{α} is a G_{ω_1} subset of F and, moreover, we can select a point $x_{\alpha} \in \pi_{\alpha}(F_{\alpha}) \subset X_{\alpha}$ such that $\chi(x_{\alpha}, \pi_{\alpha}(F_{\alpha})) \leq \omega_1$. Now the point $p = (x_{\alpha})_{\alpha < \omega_1}$ satisfies $\{p\} = \cap_{\alpha < \omega_1} F_{\alpha}$ and therefore it is a G_{ω_1} point in F. This shows that $\chi(p, F) \leq \omega_1$. \Diamond

This theorem can be considered as a generalization of the Čech - Pospišil theorem in the case that the compact space X is given as a

product of a family of compact spaces.

Theorem 3.3. Let $\mathcal{F} = (X_n)_{n < \omega_0}$ be a family of Hausdorff compact pseudoradial spaces and $|X_n| < 2^{\omega_2}$ for every $n < \omega_0$. Then $\prod \mathcal{F}$ is pseudoradial.

Proof. In fact, by the previous Th. 3.2, if F is a closed subset of the product space, then there is a point $p \in F$ such that $\chi(p, F) \leq \omega_1$. Each of the X_n is a CSC space, and also $\prod \mathcal{F}$ is a CSC space. So, by Th. 3.1, it is also a pseudoradial space. \Diamond

Concerning the equality $\mathfrak{h} = \mu$, it should be remarked that it was

completely proven only recently in [1].

The following (consistently) more general result can then be proved **Theorem 3.3'**. Suppose that $\mathfrak{h} \leq \omega_2$ holds. Then, if \mathcal{F} is a family of strictly less than \mathfrak{h} compact Hausdorff pseudoradial spaces each one having cardinality $< 2^{\omega_2}$, the cartesian product $\prod \mathcal{F}$ is pseudoradial.

Proof. In fact, the proof follows the same scheme as in the previous theorem. If F is a closed subset of $\prod \mathcal{F}$ there is a point $p \in F$ such that $\chi(p,F) \leq \omega_1$, since $|\mathcal{F}| < \mathfrak{h} \leq \omega_2$ means $|\mathcal{F}| \leq \omega_1$, and the product is still a CSC space; so, by Th. 3.1, it is pseudoradial. \Diamond

Obviously if $\mathfrak{c} = \omega_1$ Th. 3.3 reduces to Th. 3.2'.

Reference

[1] SIMON, P.: Products of sequentially compact spaces, Proc. XI Int. Conference of Topology, Trieste (1993), Rend. Ist. Matem. Univ. Trieste 25 (1993), 447-450.