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Abstract: The presented algorithm generates tube shaped NURB ‘surfaces
with given boundary conditions. A generalization of the technique of phantom
vertices of B-spline curves is given for surface design. The proposed method
is also suitable for the tangential fitting of surfaces.

Introduction

In surface design a crucial problem is the planning of boundary
curves according to in part freely chosen boundary conditions that in-
fluence the shape of the surface or ensure its smooth joining to another
surface. For both problems several solutions have been developed in
NURB (non-uniform rational B-splines) technique. The shape design
has been solved mostly by choosing appropriate knot vectors or mul-
tiple control vertices [2,3], or additional shape parameters [1], and the
fitting problem has been solved by constructing appropriate blending
surfaces [6,7). The presented algorithm also uses NURB functions and
is suitable for the solution of both problems.

Two computational methods of the NURB technique form the
basis of the present algorithm. The first is the application of phantom
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vertices determined from given endpoints, tangents and curvatures of
B-spline curves [5]. The second is the matrix representation of NURB
curves and surfaces, giving a convenient technique for the computation
of periodic B-splines [4].

The present algorithm generates tube shaped NURB surfaces with
given boundary conditions. For the boundary control the following
input data are allowed: interpolation points for the closed curves at
both ends of the tube and the tangent directions of the longitudinal
parameter lines of the surface at the same points. In this way the
generated tubular surface can be shaped easily at the ends. In the
case when a tube has to be fitted to another surface like a handle of a
flacon, the interpolation points and the corresponding derivatives are to
be computed from the function describing the other surface. According
to the given or computed boundary conditions a set of control vertices
are determined, the so called phantom points that are invisible for the
user. At the inner points of the surface the usual manipulations of
NURBs by control vertices and weights are allowed.

Underlying technique

In this paragraph a summary of the computation of one-para-
metric NURB splines is given, particularly that of cubic and closed
quadratic curves. In particular, such curves are the longitudinal and
cross section parameter lines of the generated tube shaped surfaces.

As it is well-known, a cubic NURB curve segment over the pa-

rameter interval [0, 1] has the following matrix form:

ri(u) = ’((“)) € [0,1),
for the ith interval (i = 1,2,... ,n — 2). Here R;(u) = UN;V, h(u) =
=UN;W,U=[1 u u? u?],
V=[w;V; wipx1Viy1 witaViga wit3Vigs ]T,

where V;, V11, Viy2, V13 denote the control vertices influencing the
ith segment, W = [w; wWit+1 Witz Wits ]T, w; > 0 scalar values
are the weights of the control vertices, {¢1,%2,... ,¢nt5} is the knot
vector, which is a non-decreasing sequence of the knot points {¢;} (real
numbers) and u = (t—1;)/(tiy1—t:), t € [ti, tiya], N; = [nrc];isadx4
coeflicient matrix determined by the knot vector that has the following
elements (cf. [4]):
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nii 1—n11 —ni3  nis

0
N — —3n11 3n11 — na3 nzs 0
’ 3ni1z —(8ny1+ngs) nsz 0 |7
—nii ni1 — M43 — T44 T43 T44
where
s — (tits — titva)? S (tita — tigs)?
11 — ) - : ’
(tivs —tits)(tits — tite) (tive — tiya)(ti+s — tits)
~ B(tiys — tiya)(tita — tiys) 3(tiys — tits)®
M23.— N ) ng3 = 9
(tive — tiva)(ti+s — tivs) (tite — tigs)(ti+s — Livs)
1 (tits — tira)?
T43 = —4 N33 + N4g + : },
e { 3700 T M T (tive — tiva)(tive —tigs)

B (tigs — tita)®

 (tigr — tiza)(tite — tita)’

and V; = #;44 — t;43 = A|V;Viqq|, which is the chord-length para-
metrization. In the uniform case the usual choice is t; = z.

T44

The matrices N; of a uniform B-sph’ne do not depend on ¢, i.e.
for each curve segment

1 4 1 0
1/-3 0 3 0
N’“N_E 3 -6 3 0
1 3 -3 1

When w; = 1 for all 4, the denominators h;(u) of ri(u) are identically
1, consequently the vector valued functions r;(u) are polynomials (non
rational). The whole cubic NURB spline over the knot vector consists
of n — 2 segments and is C?-continuous everywhere, if there are no
multiple control vertices. The number of control vertices, therefore the
number of weights is n + 1. The following scheme shows the indices of
the knot points, control vertices and intervals used in this paper.

Vl V2 Vn Vn+1

i1 to i3 14 ts tnt1 tne2 tn43 tntda tnts
Vi VinisVip_2

The starting point P and the endpoint P, of the curve are given by
the vectors r1(0) and r,—3(1), respectively. The tangent vectors are
given by the values of the first derivatives at the same places, where
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i(u) = R(u) [_ :2(&))} n R(u)h(lu)-

In the following the method of phantom points determined by
boundary conditions is summarized, which is well-known for one-para-
metric B-spline curves. The proof of the following lemma in the poly-
nomial case is given, for example, in [5].

Lemma. If the starting point P, of a periodic NURB curve and the
tangent vector T's at this point are given, then the contrdl points V,
and Vy of weights 1 are determined as the solution of a system of linear
equations and, similarly, the last two control points V, and V.11 of
weights 1 can be computed from the given endpoint P, and the tangent
vector T, at that point.

Proof. Let the knot vector and the control vertices Va,... ,V,_;,
furthermore the weights w1 = wy = 1,ws3,... ,Wp_1,Wn = Wypy; = 1
be given. The equation of the ith curve segment is

_ R(u)

0<u<l1

I‘i(u) - h(u)’ = —

1=1,...,n—2.

The data
P3 = rl(O), TS = 1'1(0), Pe = I'n_z(l), Te = I‘n_z(l)

are also given. For the first segment of the curve the value of R(u) and
R(u) at u = 0 can be computed as follows:

R(0)=[1 0 0 O0][nc];[V1 V2 wsVs wsVy]

=[ni1 niz nizs 0][V:i Vi w3V wgV,]
R(O)=[0 1 0 0][nely (Vi Vi wsVs wsVy]
Vi Vy wsVz wsVy]

T

~

T

~

=[ng1 mna2 nas 0]
Similarly, at the endpoint of the (n — 2)th segment
R=[1 1 1 1nrel, 5[wn2Vnz waiVay Vi Va7,
R(D=[0 1 2 3][nrcl, olwn-2Vacz wasiVaor Vi Ve @

The corresponding expressions for the denominator h(u) of r(u) differ
only in the last row matrix, which contains only the scalar weights of
the components. Consequently,
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n11 V1 +n12Va + njzws Vs
1'1(0) = = Ps,
n11 + N1z + ni3wWs
#1(0) = —(ng1 + no2 + 712311’32)
(n11 +n12 + nisws)
1
ni1 + N1z + Ni13ws .
which is a system of linear equations of the following structure:
P+ b6Vy =a11 V1 +a12Va
Ts+bVs=0a21Vy +a22Va.
The unknowns are the control points V1 and V3, the scalar coeflicients
are given by the elements of [n,.], and the weight ws. If the deter-
minant of the system is zero, either a knot point or the control vertex
V3 or its weight w3 has to be changed. In this way the system can be

made regular. In particular, in the case of uniform polynomial B-spline
this system reduces to

(n11V1 +n12Va + nisws Vi )+

(na1 Vi +n22Va + nogws Vi) = Ty,

1 1 4

P,— Vs=-Vi+-V
6737 5 1+6 2
1 1
Ty~ -Vy=—2V
2 3 2 1,

which always has a unique solution (V,V3). The corresponding sys-

tem of linear equations at the endpoint has the form
P.+diVao+eiVaor =11 Va+612Vap
Te+daVna+e Va1 =b1Vy+022Vayy,

where the coefficients d;, e;, b;; are scalars given by [n,c],_,, Wn_2

and w,_1. In particular, in the uniform polynomial case

1 4 1

P,— -V, 1=-V,+>V,
gl T gVn T gVat
1 1
T, +=Vu1 = =Vay1,
+ 5 1 5 +1

which always has a unique solution (V,, Vpy1). O

The vertices Vi, V3, Vg, V.11 determined by the end condi-
tions are called phantom wvertices, unknown and unvisible for the user.
Therefore the assumption for the corresponding weights wy = wa =
= w,_9 = wnp_1 = 1 does not limit the possibilities of shape control.

A periodic closed quadratic NURB curve is determined in a similar
way by the knot vector s; < 83 < ... < Smy4, the control vertices
V1=V, Vo=V, Vs,... , Vo1 and the corresponding weights
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Wi,... ,Wm—1. The curve consists of m — 1 segments, and its first
derivative is continuous at each point if there are no multiple vertices.
The indices of the knot points and control vertices are shown in the
following sketch

Vl Vg VmEvl Vm+1EV2
81 82 83 84 S5 Sm Sm+1 Sm42 Sm+3 Smt4
JASRRVAY Dm—s Am—1 VAN

Each segment is parametrized from 0 to 1 and is represented by the
vector function

T
[1 w “2] [mrc]z. [wiVi wiy Vi Wit2 Viga |

O e ime ki (wr wins weeal”

(i=1,...,m—1), where
u=(s—s8i)/(six1—si) = (s —8:1)/Diy 5 € [s5,8i41]-
The elements of the matrix determined by the knot vector are:
my; miz 0
[mrc ]z = —2m11 2Tnll 0 3
miy M3z Mg33

Si+3 — Sit2 Si+2 — Si41
myy = —————, M= ———,
Si43 — Si41 Si4+3 — Si41
1 1 8i43 — 8442
Mz =—(si+3—Sit2) + , Mg = — —
Si4+3 —Sit1 Si44—8i42 Sitd T 842
In the chord-length parametrization we have A; = $i43 — Si4z =
= A|V;Vi1]. In the uniform case we obtain
1 1 1 0
[mrc] = —2' -2 2 0
' 1 -2 1

Boundary conditions for tubular surfaces

In this paragraph the technique of boundary control applying
phantom points is shown for two-parametric spline surfaces what is
a generalization of the case of one-parametric curves. The algorithm
for the boundary control of tube shaped surfaces is developed for two-
parametric NURB representation of 3 x 2 degrees. The u-parameter
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lines of the r(u, v) vector function are rational cubic longitudinal curves,
and the closed cross-section curves of the surface (which require less
elasticity in the planning process) are quadratic rational functions of the
second parameter v. A patch of the composed surface is described by

R(u,v)
rij(u,v) = h(u,v)’
0<u<l,0<v<l,2=1,...n—-2, 5=1,... , m—1,

where
R(u,v)=[1 u u? us][nrc]i{wijvij][mrc]fu v v2]7,

h(u,v) =[1 u u? u3][nrc]i[wij][mrc]r[1 v ’UZ]T

7 ?

. and
Vi Vi j+1 Vi jt2
Vi, = Vit1,; Vitj+1 Vigrjte
Vita,j Vitaj+1 Vips jre
Vis; Vigsjr1 Vigs,js2
is the matrix of control vertices influencing the (7, j)th patch and w; ;
are the corresponding weights. [n,]; is the cubic B-spline coeflicient
matrix determined by the knot vector {ti,...,tn4s}, [mrc]j is the
quadratic B-spline coefficient matrix determined by the knot vector
{81, e ,Sm+4}.
u=(t—ti')/(ti+1 —ti), te [ti,ti+1], 1=1,... ,n+4,
v=_(5—35;)/(sj4+1 — 8;), S €E[sj,sj+1] j=1,...,m+3.
The total number of control vertices is (n+1)x(m+1). For the control
points of the closed cross section v-parameter curves V;m—1 = V;1;
Vim = Vi1; Vimy1 = Vi, must hold. The derivatives
R.,h—Rh, R,h —Rh,
=— 7= and | r, = —
determine the tangent plane of the surface at each point. These formu-
las become rather simple at the corner points of the patch, i.e. for the
parameter values u = 0,1 and v = 0,1. For the patches, whose control
points are of weights 1, the vector function r;;(u,v) is polynomial, and
the derivatives are easier to compute.
Consider the boundary curves of the tube shaped surface. The jth
segments of the two curves are given by ry;(0,v) and rp,_5 ;(1,v) j =
=1,...,m—1, respectively. In the planning process the problem arises,

Ty
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how the boundaries can be forced to pass
through given points, at which the tan-
gent plane of the surface is also given.
For the sake of simplicity the segmenta-
tion and parametrization of the boundary
curves will be chosen in such a way that
the given interpolation points are the cor-
ner points r; ;(0,0) and rn,—2;(1,0) (j =
= 1,3,5,...,m — 1) of the patches at the
ends of the tube, and the tangent planes and
the twist vectors are given at these points
as well. The following theorem shows that
four control vertices of each patch along a
boundary curve can be determined from the
boundary conditions. These vertices are the
Figure 1. Control points  so called phantom points and are determined
of a patch depending on 45 the solution:of a 4 x 4 linear equation sys-
the boundary conditions.  tem at both ends of the tube.

Theorem. The corner point Pg, the derivatives Tys, Tys and the
twist vector Tyys at the point (u,v) = (0,0) determine the control
vertices V1 j, Vaj, Vi,j+1, Va,j+1 of the patch ry ;(u,v) uniquely.
Similarly, the control wertices Vo ;, Vioi1j, Vaj+1 Vagr,j+1 of the
patch rn_s j(u,v) are determined by the corner point P, the deriva-
tives Tye, Tye and the twist vector Tyye at the point (u,v) = (1,0)
(G=1,3...,m—1). '

Proof. For simplicity the computation will be carried out for the poly-
nomial case. It can be seen from the proof of the Lemma that the
structure of the equations in the rational case is the same, because:
the denominators contain only constant scalar values. By assumption,
the control points of the bordering patches ry ;j(u,v) and r,—z ;j(u,v)
are simple vertices and their weights are set to be 1. The boundary
conditions along the upper end of the tube (Fig. 1) give the following
equations for the patch ry ;(u,v) :

P, =r;(0,0)=[1 0 0 0][ne];[Vy]lmeelj[1 0 0]

T
——-[n11 Niz 713 'n14][Vij][m11 ma1 m31] )

T = or(0,0)=[0 1 0 0][ne,[Vi][melT[1 0 0
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T
2[7121 Tiga  Tia3 7124][Vij][m11 maj msl] ;

T,,S:a%rlj(o,mzu 0 0 0][neel;[Vijl[meel; [0 1 0]F

= [7111 Ni2 Ni13 n14] [Vij ] [m12 map msz]T, ‘

0 0

50 5y 71
=[na1 naz nas naa)[Vij][mia may mg]” |

In the uniform case, substituting the elements of the constant matrices

N and M, the equations are the following;:

Vi,j+4Vaj+ Vi1 + 4V =12P, — V3, — V3 j44,
—3V1,; —3Vy 41 = 12T, — 3V3; —3V3 41,
—2V4,j —8Vy j + 2V j11 +8Vy j41 = 12T, +2V3 j — 2V3 1,
6V1)]‘ — 6V1}j+1 - 12Tuv.9 + 6V3’]‘ - 6V3’]‘+1.
This system of equations has a unique solution for the control vertices
Vl’j, Vl,j—i—17 szj, V2’j+l, (] = 1,3 .. ,m - 1) The equations in the
non-uniform case differ only in the coefficients. If the determinent of the
system is zero, either a knot point or a control vertex (V3 ; or V3 ;1)
has to be changed a bit. The corresponding system of equations at the
other end of the tube for the patches r,_; j(u,v), (j =1,3... ,m —1)
in the uniform case can be obtained from the conditions

Tyvs = 0,0)=[0 1 0 0][ne];[Vij][me]j[0 1 07

0
P.= rn—Q,j(170)7 Tye = Ejjrn—Z,]’(lao)a
0 0 0
Tye = 6—vrn_z,j(1,0), Tupe = *azgrn—mj(lao)a

and is the followirg:
Vn,J+Vn+1’]+4Vn,]+1+Vn+1’]+1:12Pe_vn_—1’]—v'n_—l]4.17
3Vii1,5t3Var1 j41=12T4e+3Vn1,j4+3Vn_1,jt1,
BV, i—2Vop1, 48V i1 +2Vi gy 11 =12T0 42V, -2V, 1,
6V 41,46 Vay j41=12T 40 =6V 1 j+6Vy_1 jy1.
This system has a unique solution for the control points V, j, Vi1 j,
Vaj+1 and Vg 1 (5 =1,3... ,m —1). This fact shows that if the
determinant of the system in the non-uniform case is zero, a change
either of the knot vector or of a control vertex (V1 ; or Vg j41)
makes the system regular. The proof of the theorem is complete. ¢
As the control points in the jth and j4+1th columns are determined -
- by the boundary conditions at the corner point of the jth patch, the
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computation of phantom points has to be carried out for each second
patch along the boundary curves. The assumption on the weights at
the bordering patches is in practice a very small restriction. For, the
phantom vertices cannot be changed by the user, consequently their
weights can be fixed. In this way the assumptions w; ; = wi j41 =
= wy,; = Wwg,j41 = 1 and wg j; = Wp j+1 = Wnt1,j = Wnt1,j+1 = 1 do
not mean any restriction in the planning process, only the conditions
W3, = W3,j+1 = Wa,j = We,j41 = 1 and wn_1,j = Wa—1,j41 = Wa,j =
= Wy j+1 = 1 limit the freedom of the user. The control vertices Vy j,
Vi4,ji+1,--- 5 Va—2,j, Vn—2,j+1 and the weights ws ;, ws j+1,- .- , Wn-3,5,
Wn-3,j+1 (J =1,3... ,m —1) do not influence the shape along the end
curves, and they can be manipulated as usual in NURB technique.

Applying rational vector functions r; ;j(u,v) and rp_3 ;(u,v) along
the two boundaries, the limitation made for the weights can be lifted
and the structure of the equations for the phantom vertices remains
the same, because the denominators contain given scalar values only.
Consequently, the proof of the theorem in the rational case is practically
the same.

Remark. The third row of the matrix V;; does not influence the
phantom vertices determined by the endpoints of the longitudinal u-
parameter curves, the first derivatives and the twist vectors at these
points. That makes possible to split the surface into longitudinal stripes
formed by two columns of patches. In such a way one interpolation
poirit and the corresponding derivatives, which will determine four con-
trol points, can be prescribed at both ends of each stripe.

The set of input data standing on the right-hand side of the sys-
tem of equations can be reduced by computing the derivatives in the
v-parameter direction from the given interpolation points and setting
the twist vectors to be zero. The remaining tangent vector in the lon-
gitudinal direction will shape the surface easily along its boundary.

Examples. In Fig. 2 a tubular NURB surface is shown defined by the
control net, which is drawn by broken lines. If the tangents of the
longitudinal lines and the tangents of the boundary curves are changed
at the corner points (u,v) = (0,0) of the upper bordering patches and at
(u,v) = (1,0) of the lower bordering patches (Fig. 3), then two rows of
control vertices at both ends of the tube will change. The corresponding
control net is shown in Fig. 4.
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A surface fitting problem can be seen in Fig. 5. The tube will be fitted
to a cylinder along a given surface curve in such a way that the new
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lower boundary line of the tube interpolates the given curve, and the
tangent planes and twist vectors of the two surfaces are common at the
interpolation points. The generated surfaces with the new boundary
curve are shown in Fig. 6 and Fig. 7 in the original and in a rotated
position, respectively.

Conclusions. A method for generating tubular NURB surfaces with
given closed boundary curves and tangent planes at their points has
been presented in this paper. The proposed algorithm allows the con-
trolling the shape of surfaces along the boundaries and solves the fitting
problem of such surfaces with tangent plane continuity. The necessary
computations are organized in such a way that they can be implemented
easily in computer programs for surface design.
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