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Abstract: The aim of the present paper is to study some properties in
recurrent Finsler spaces. First we prove that a recurrent Finsler space of
nonzero scalar curvature is a Riemannian space of nonzero constant curvature.
Further on we will investigate the geodesic mappings of special Finsler spaces
into a recurrent Finsler space.

1. Introduction

Let F*(M"™, L) be an n-dimeasional Finsler space, where M™ is
a_connected differentable manifold of dimension n and L(z, y), where
yi = ' 1, is the fundamental function defined on the manifold TM\O

?
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of nonzero tangent vectors. We assume that L(z,y) is positive and the
metric tensor g;;(z,y) = %L?i)(j), (() = 8/8y*) is positiv definit.

The Berwald connection BI' = (G}, Gj,) of a Finsler space is
constructed from the function G*(z,y) appearing in the equation of the
geodesics

d?z" [ dt® + 2GY(z,y) = 0.

The Gi(x,y) are positively homogeneous functions of degree two in y.
The Berwald connection coefficients G} and G;k can be derived from

the function G*, namely G’j : G?j) , ;k = Gj-(k). The Berwald covari-
ant derivative can be written as

(1.1) ik = oT; /O™ — T;(Q)G,C: + TPGh — TaG .

Let F" = (M™,L) and F = (M™,L) be two Finsler spaces on the
underlying manifold M™. A diffeomorphism F™ — F is called geodesic
if it maps an arbitrary geodesic curve of F™ to a geodesic curve of Fn
In this case the change I — L of the metrics is called projective. As
it is well known ([3]), the mapping F™ — F is geodesic (that is the
change is projective ) iff there exists a scalar field p(z,y) satisfying

(1.2) G =G+ py.
The projective factor p(z,y) is a positively homogeneous function of

degree 1'in y. From (1.2) we obtain
(1.3) G, =G +p8+py' 5 pi=py)

(1.4) G = Gl +pi6i +pr8 +pjxy’ 5 pix = pik)-

A Finsler space F'™ is said ([3]) to be of scalar curvature if

(1.5) ) H=hiH

where h} = 5} —1l; , I'=y'/L and [; = L. H}(a‘:,y) is the
deviation tensor of F™ which is given by ([3])

- H}=20G'/0a’ —y®0G/02" — 2GL,G* — GLG?,

(1.6) and Hj =(n-1)H.

From the curvature tensor Hiiijk = %(Hli(;‘) - H}(k))(h) we have H =

= H;ﬁkyo‘yﬁ. (The index 0 denotes as usual the transvection by y*, for
instance QQoy® = Qo.)



On recurrent Finsler spaces 177

Assume that there exits a geodesic mapping between F™ and F .
Then the deviation tensors satisfy the relation

(1.7) H, = H +y'Qjay™ + 6:Qay® — y'Q;
where Q; = pu; —pp; ., Qjk =Djnk — Pkuj-

2. Recurrent Finsler spaces

Definition ([5]). A Finsler space F™ is called recurrent if the curvature
tensor of F'™ satisfies the following condition

(2.1) lezjkul = Mi(z, y)lezjk

where A\(z,y) is a positively homogeneous function of degree 0 in y.
Several authors have studied the recurrent Finsler spaces and their

generalisations (e.g. [4] , [6], [8], [9]).

Definition ([2]). A Finsler space F" is called a Landsberg space if the

condition

holds good, where gjrn = —2Pjr;  and 8G;~k/8yl = j’kl-

Proposition 1. For a recurrent Finsler space with the nonzero vector
A depends on the position = alone.
Proof. Using the equation (2.1) from the 1ntegrab11ty condition

Tiuey = Tiwyme =I5 Gor — Ta G

J
we get

(2.3) Hiy My = Hj Gl + HL ;G — HL .Gy

where H]’k = Héjky"‘. Contracting (2.3) by the y* we have

(2.4) Hidgny = Hi Gl — H Gy

After contracting (2.4) by the indices ¢ and j we obtain (n—1)H ;s =

= 0. If we assume that H # 0, then Ay =0 Q
From Prop. 1 and from (2.4) follows

(2.5) HE Gy, — HLGSy = 0.

alh

If F™ has scalar curvature, then substituting (1.5), (2.2) and (2.5) we
obtain

H
7 Pitn =0,
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where H = R(z,y)L* and R(z,y) is the curvature function. If H # 0
holds good (i.e. R(z,y) # 0) then F™ is a Lansberg space. From Nu-
mata’s result [7], by which a Lansberg space of nonzero scalar curvature
is a Riemannian space of nonzero constant curvature, follows the

Proposition 2. A recurrent Finsler space F™ of nonzero scalar curva-
ture is a Riemannian space of nonzero constant curvature.

3. Geodesic mapping of recurrent Finsler spaces

In this secti®nh we suppose that n > 2. We are concerned with
a geodesic mapping F™ — F . where F™ is an arbitrary but F is a
recurrent Finsler space. In virtue of (1.1), (1.3) and (1.4)

—h ~ —h —h _— —a —h
(3-1) Hiyyp—(2pe+Ae)H; —H,yp+H; paby + H; pray™ —Hypi = 0.

Here we use that F is a recurrent space (i.e. H”,,,k /\kH”,, from
—h — —h
which H5, = ArH; ), and the well-known identities ([2], [3]):

Hioy® =2H: |, Hiy®*=0.

1

Substituting (1.7) into (3.1) and contracting it by the tensor A} we have

H}p — b 1 Qanky® — (2pk + A0 H! + (2pk + M )Rl Qay®—

3.2)
( —Hkpz h H(k)p+ +h (Qay )(k)p+ th Po = 0.

Contracting (3.2) by y* and indices [, 1 we receive

(3.3) H,,o,y“—quﬁ‘ﬂyﬂ—(4p;X)H+(2pr)Qay"+(Qay“)(ﬂ)yﬂp = 0.
From (3.2) and (3.3) we can conclude that

(3.4) Ainay® = (dp+ VAl

where Al = H! — HAL. (If Al =0, then F'™ is a space of scalar curva-
ture.) The semi-recurrent Fmsler space is characterized by the equation
(3.4) [1]. Therefore the following theorem is valid:

Theorem 1. If a Finsler " space F™ can be geodeszcally mapped onto a
recurrent Finsler space F , then F™ must be A-recurrent.
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Special cases
A) With help of the well-known identity giaH;' — gjoH = 0 from
(3.2) we obtain
H!'hEpo — H'h¢pa — hi Hpa + B} H pat
+2Ph HY — 2P} HY + 2pCJ HY — 2pClL HY = 0.

«

(3.5)

Suppose that the F'™ is a Riemannian space, then ([2])
(36) %gz’j(k) =Cijxk=0 , Pjr=0
Contracting (3.5) by the indices h and i, then using (3.6) we get
Hap® = Hhipa , p* = g* g,
ie.
(3.7) Alp* = 0.
Substituting (3.7), (3.6) and (3.5) we have
AlRSpo — AlhEpa = 0.

Using (3.7) this equation reduces to
AZL gpapﬂ =0

which means that A" =0, if hgpapg = pap® — L?p? # 0. Thus we have
. proved the following
Theorem 2. If F™ is a Riemannian space which can be geodetically
mapped onto a recurrent Finsler space‘Fn, then F'™ must be a Rieman-
nian space of constant curvature if pop® — L?p* # 0.

B) Let F'™ be also a recurrent Finsler space. From the cquation

h _ Th
Hijklll - )‘ldijk

we obtain v

| HY y® = MHY | Huay® =AH | A= Aqy°
Thus

(3.8) Al oy = NADM.

Considering (3.8) and (3.4) we get
 (4p+X-NAt =0
Finally we have the following
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Theorem 3. If a recurrent Finsler space F™ can be geodesically mapped
onto a recurrent Finsler space_Fn, then F™ must be a Riemannian space
of constant curvature if 4p + X — X # 0.

The authors would like to express their gratitude to Professor M.

Matsumoto for his valuable advice.
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