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Abstract: We consider here s-unital rings R satisfying the following con-
dition: For each subset F' of R having at most four elements, there exist
non-negative integers m=m(F'), n=n(F), r=n(F), s=s(F), t={F) and
t' =¥ (F)such that m>00rn>0, n+t+t #r+1orm+s>1if m=n>0,

!
and 2 [z", 9]’ = £ 2" [z,y™]y* for all 2,y € F. Under appropriate additional
conditions we prove some commutativity theorems for R. Especially, in the
“global case”, where F' = R, instead of ¥ C R, |F|<4,i.e. wherem, n, 1, 8, ¢
and ¢ are fixed, we improve some earlier results obtained by several authors,
among them H. A. S. Abujabal and the present author.

1. Introduction

We investigate here the commutativity of a ring R satisfying the
following property

(P4) For each subset F' of R having at most four elements, |F| <
< 4, there exist non-negative integers m = m(F'), n = n(F), r = r(F),
s=38(F), t =t(F) and t' = ¢/(F) such that :

(1) zt (2™, y]z* = 2" [z,y™]y° for all z,y € F.

Our general assumption on the above integers will be:
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(2) m(F) > 0 or n(F) > 0 for each FF C R, |F| <4,
and moreover
3) if m(F) = n(F), then n(F) +¢(F)+t'(F) #r(F)+1
: or m(F)+ s(F) > 1 for each F C R, |F| < 4.

The assumption (2) is natural, since for m(F') = 0 and n(F) = 0 the
condition (1) is trivially satisfied. Concerning the condition (3) we re-
mark that if m(F) = n(F), n(F)+{(F)+t'(F) = r(F)+1 and m(F)+
+ s(F) =1, ie. s(F) = 0, then for every ring R with the additional

condition
(4) [z,[z,y]] =0 forall z,y € R

the condition (14) (resp. (1-)) is surely fulfilled (if R is of character-
istic 2). Namely, for such a ring, in view of (4), (1) is equivalent (see
Lemma 2) with

(5) n:r"“"'t’_l[a:,y] = 4+ma"[z,yly™ ! for all 2,y € F.

Since a non-commutative ring can satisfy (4), the condition (3) is thus
also reasonable. Thereby, we have denoted by (i), resp. by (i) the
condition obtained from a condition (i) which contains the sign + by
setting 4+, resp. — instead of +.

A similar condition denoted by (Q4) with

(1") z [z, y]z* = 4y [z,y™]y° for all z,y € F

instead of (1), we consider in another paper [13].

If in (Py),r(F) = 0 for each FF C R, |F| < 4, resp. in (Qa),
s'(F)y=0for all F C R, |F| <4, then (P4), resp. (Q4) is a special case
of (Q4), resp. of (Py). Otherwise, these two conditions are not easily
comparable.

We remark that instead of (1) we could consider

(1" 2! [2", ylzt = +y°[z,y™]z" for all z,y € F.
But going from R to the opposite ring R, (1") becomes
(1" :ct[w",y]mtl = dz"[z,y™]y® for all z,y € F',

where F' = F is considered as a subset of R'. Thus, we see that it
suffices to consider only one of the conditions (1) and (1"): the results
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concerning one can be obtained as corollaries from the results concern-
ing the other of the conditions.
For F =R instead of FC R, |F|<4, the condition (P4) reduces to
(P) There exist non-negative integers m,n,r,s,t and t' such that

(6) zt [z™,y]z* = £2"[z,y™]|y® for all =,y € R,
and
(7) m >0 or n >0, and if m =n, then n+t+t' # r+1 or m+s > 1.

We tell (P) the globalisation of (P4), and (P4) a localisation of (P), and
in this connection we will talk about the local and the global case of a
statement or a condition.

Occasionally we will make other additional conditions on R, or on
integers m(F), n(F), r(F), s(F), t(F) and t'(F). For the local case we
will additionally assume (4) or

(I—A) For each z € R, z € A or there exists f(X) € X?Z[X] such
that z — f(z) € A, for a suitable non-void subset A of R.
In both cases we will need one of the conditions: ‘

(8) mlz,y] = m[z,y]f(y) = [z,y] = [z, y]kf(y),
(8" nlz,y] = nlz,ylf'(v) = [z,9] = [z,y]*' f'(y),
(8") (nF Dlz,y] = [z, y]f"(y) = [z, 9] = [z, y]k" ' (y),
(8") 2[z,y] = [,y]f"(y) = [z, y] = [&, y]k" [ (y)

for all z,y € F in the local case, and for all z,y € R in the global case.

Thereby, k, k', k" and k"' are appropriate integers (or polynomials in
XZ[X] taken at X = y), and

(9) F(X)= (X +1)mte=t 4 xmts—l 4
(9" (X)) =—(X + D iatanier it grbt o1 4
(9") f'(X)=—n(X+1)PHH I XrbH =1 L (X 1) £ X7+ (nF ),

and

(9///) f“’(}f) — —(){ + 1)t+t' + }ft'H/ _ (}( + 1)r +XT42

are polynomials in XZ[X] for suitable values of m,n,r,s,t and #'.
Obviously, (8), resp. (8') implies 4

(8)* mlz,y] =0=[z,y] =0 forall 2,y € F, [z,y]y* =0,

resp.

(8")* n[z,y] =0= [z,y] =0 forall z,y € R, [z,y]y® = 0.
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Concerning (8"), resp. (8"") we have only

(n F e,y = 2,91 (y) = (0 F1)[z,4] =0,

[z,y] = [z,y]&" f"(y) = [z,4] =0,
resp.

Q[Tv y] = [m,y]f”(y) = 22[3"7?/] =0,
[l‘w y] = [m,y]k”f"(y) = [IB, y] =0

for all r.y € F. [z,y]y? = 0. Therefore, the conditions

(8")* (nFD[r,y) =0=[r,y] =0 for all z,y € F, [ac,y]yz =0
resp.

(8"")* 2%[z.4] =0 = [z,y] =0 forall z,y € F, [z,y]y? =0,

which we will also consider here, does not follow from (8"), resp. (8"").
We remark that in the local case, the condition (8), (8)*, resp.
(81 (&V* . resp. (8")*. resp. (8"")* follow from

Qlg) ¢qlz.y]=0=[z.y]=0forall z,y € R
with ¢ = m. resp. ¢ = n, resp. ¢ =n F 1, resp. ¢ = 2.

But the conditions (8). (8" are surely satisfied if [z, y]f(y), resp.
[#.y]f'(y) 15 torsion-free or m.. resp n is relatively prime to the additive
order of [z,y]f(y). resp of {z.y!f'ty) Similarly, the conditions (8"),
(8"") are satisfied provided |z yjf"ty). resp [r.y]f"(y) 1s a torsion
element, and n F 1. resp 2 1s relatively prime to the additive order of
the element [z,y]f"1y). resp. [z.y]f"'(y) Finally. (8)* (8')*. (8")* and
(8"")* are satisfied if and only if [z.y| 15 torsion-free or the additive
order of |z,y] 1s relatively prime to m.n,n F 1 and 2. respectively.

In the global case some commutativity results were obtained by
H.A.5. Abujabal and the present author in [2|. and more generally in

[4] For a very special form of (1/]) with s = ¢ = 1 (in our notations).
but for m > 1 and » > 0 depending on = and y were combined by
Ashraf and Quadn with (I-A) for some commutative subset A of N(R).
They proved that each ring R satisfying these two conditions must be
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commutative ([4], Th. 1). Later H.A.S. Abujabal, M. Ashraf and M.
Obaid enlarged this result to the case where t' > 0 also depending on z
and y ([4], Th. 1). They also proved the corresponding result for (1)
instead of (1) (assuming that R is s-unital ([1], Th. 2). Recently, H.
Komatsu, T. Nishinaka and H. Tominaga [11] proved somewhat more
(f(y) with f(X) € X%?Z[X] and f(1) = 41 instead of y™, and A = N
instead of A C N and A commutative) ([11], Th. 3.2)) and without
condition (I—A) for ¢’ > 0 and r > 0 fixed) ([11], Th. 3.3; see also [12],
Th. 1).

Our aim is to prove here two commutativity theorems for the
local case, and three theorems for the global case. The second local
theorem is partially connected with the results of Ashraf and Quadri,
resp. of Abujabal, Ashraf and Obaid mentioned above. The second
global theorem we proved here improves all results of [2] and [3].

2. Results

In the local case we combine first the condition (P4) with (4) and
prove
Theorem 1. Let R be an s-unital (a left, or right s-unital) ring satis-
fying (P4) and (4). Then R s commutative provided for each F C R,
|F| <4, any one of the following conditions is fulfilled:
1) m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 0; F satisfies (8) if
r(F) >0 and (8) or (8) if r(F) =0 and (m(F),n(F)) # 1;
2) n(F) =0, m(F) > 0; F satisfies (8) (and r(F) =0 or s(F)=0);
3) m(F)=0, n(F)>0; F satisfies (8') (and t(F) =0 ort'(F)=0);
4) m(F)=1, n(F) > 1, s(F)=0; and F satisfies (8");
5 m(F)=n(F)=1, s(F)=0.
Theorem 2. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (Py) and (I-N). Then R is commutative provided for each
F C R, |F| <4, one of the following conditions is fulfilled:
1) m(F)>0,n(F)>0;, m(F)>1ors(F)>1; (t(F)=0o0rt(F)>
> 0 and s(F) =0, resp. t'(F) =0 or t/(F) > 0 and r(F) =0);
F satisfies (8)* for r(F') > 0, except for n(F) =1, t(F) =0 or
t'(F) =0, and (8)* or (8)* for r(F) =0 and (m(F),n(F)) # 1;
i) n(F)=0, m(F) > 0; (s(F) =0, resp. r(F) = 0); end F satisfies
(8)%;
i) m(F) =0, n(F) > 0; (¢(F) = 0, resp. t/(F) = 0); and F satis-
fies (8')*;
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) m(F) = 1, n(F) > 1, s(F) < 1; (((F) = 0 or t(F) > 0 and
s(F) = 0, resp. t!(F) = 0 or t'(F) > 0 and r(F) = 0); and F
satisfies (8")* for s(F) = 0;

v) m(F)=n(F)=1, s(F) < 1; ({{(F) =0 or t(F) > 0 and s(F) =
=0, resp. t'(F) =0 or t'(F) > 0 and r(F) = 0); and F satisfies
(1-) and (8"")*.

Th. 1 we use in several occasions. Th. 2 is connected with the
above mentioned results ([1], Th. 1) and ([4], Th. 1). The localisation
in our theorem is not properly complete, but the equation (1) is more
general, and moreover, in (I-A) we assume A = N, and not that A is
a commutative subset V.

~In the global case, for a semi-prime ring R we can drop the condi-
tion (I-N) in Th. 2 and weak all of the other conditions in this theorem.
Precisely, the following theorem holds true:
Theorem 3. Let R be a semi-prime ring satisfying (P). Then R is
commutative provided one of the following conditions is satisfied:
a)m>0,n>0,m>1o0rs>0;

b) n=0,m>0; andr =0 or s =0 for m even;

c) m=0,n>0;andt=0 ort' =0 for n even;

d)m=1,n>0,s=0;,t>00rt=0and n even, orn and t' —r
odd.

Similarly, in the global case, it is possible to drop the condition
(4) in Th. 1, for any ring R, under an appropriate sharpening of other
conditions in this theorem:

Theorem 4. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying condition (P). Then R is commutative provided one of the
following conditions is fulfilled:

AAm>0,n>0,m>1ors>1;t=00rs=0, resp. ' =0 or
r =0 (only if R is left, resp. right s-unital); R satisfies (8) for
7 >0, ezcept forn =1 and t =0 or t' =0, and (8) or (8') for
r =0 and (m,n) # 1;

B) n=0,m>0;r=00rs=0 (for m even); and R satisfies (8);

C) m=0,n>0;,¢=00rt=0 (for n even); and R satisfies (8');

D)m=1,n>0,s<1;t=00rs=0, resp. t' =0 orr =0 (only
if R is left, resp. right s-unital); and R satisfies (8'") for s = 0.

The conditions (8), resp. (8) or (8') in Th. 4 A), which are trivially
satisfied if i = 1, can be eliminated if we assume that R satisfies (P)
for m = mj, n=nj,r=rj,s=s;1t= tj and t' = t%, where j
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runs over a finite index set J such that the greatest common divisor
(mj: 3 € J)is equal to 1:
Theorem 5. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying (P) for m =mj, n=n;, r =r;, s = s;, t =t; and t' =},
where j Tuns over a finite index set J, such that (m;:j € J)=1. If
moreover, for each j € J,

m; >0, n; >0; m; >1 or s; >0
t; =0 or SjIO,t;-:() or ;=10
(only if R s left, resp. right s-unital),

then R 13 commutative.
Since, as just mentioned, Q(m(F)) = (8) = (8)*, and Q(n(F)) =
= (8') = (8')*, we have especially the following results:
Corollary 1. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (P)s and (4). Then R is commutative if for each FF C R,
|F'| <4, one of the following conditions is fulfilled:
1"y m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 0; R satisfies
QUn(F) if r(F) > 0, and G(m(F)) or Q(n(F) if r(F) = 0
and (m(F),n(F)) # 1;
2") n(F) = 0, m(F) > 0; R satisfies Q(m(F)) (and r(F) = 0 or

o(F) = 0);
3") m(F) = 0, n(F) > 0; R satisfies Q(n(F)) (and t(F) = 0 or
t'(F)=0)

4"y m(F)=n(F)=1, and s(F)=0.
Corollary 2. Let R be an s-unital (a left, resp. right s-unital) ring
satisfying (Py4) and (I-N). Then R is commutative if for each F C R,
|F'| <4, one of the following conditions is fulfilled:
iy m(F) > 0, n(F) > 0; m(F) > 1 or s(F) > 1; (¢(F) = 0 or
T(F)>0and s(F)=0, resp. t'(F) =0 or t'(F) > 0 and r(F) =
= 0); F satisfies Q(m(F)) for r(F) > 0, except for n(F) = 1,
t(F)=0 ort'(F) =0, and Q(m(F)) or Q(n(F)) if r(F) =0 and
(m(F), n(F)) £ 1;
i) n(F) =0, m(F) > 0; (s(F) =0, resp. r(F) = 0); and F satisfies
Qm(F));
iii") m(F) =0, n(F) > 0; (t(F) =0, resp. t'(F) =0); and F satisfies
Qn(F));
iv) m(F) =1, n(F) >0, s(F) =1; ({(F) =0, resp. t'(F) = 0, or
#(F) > 0 and r(F) = 0).
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Corollary 3. Let R be a left, resp. right s-unital (an s-unital) ring
satisfying condition (P). Then R is commutative provided one of the
following conditions 13 fulfilled:
AYm>0,n>0,m>1ors>1,t=00rs=0, resp. t' =0 or
r =0 (only if R is left, resp. right s-unital); and R satisfies Q(m)
forr >0, except forn =1 andt = 0 ort' =0, and Q(m) or
Q(n) forr =0 and (m,n) #1;
B)Yn=0,m>0;5s=0o0rr =0 (form even); and R satisfies Q(m);
CYm=0,n>0;t=0o0rt =0 (for n even); and R satisfies Q(n);
DYm=1,n>0,s=1;t=0, resp. t' =0 orr =0 (only if R 1is
left, resp. Tight s-unital).
Cor. 1 follows immediately from Th. 1, Cor. 2 from Th. 2, and
Cor. 3 from Th. 4. Cor. 2 is related to the mentioned results of [1] and
[4], and Cor. 3 contains almost all main results of [2] and also of [3].

3. Preparations for the proofs

In all of our theorems, except for Th. 3, we suppose that R is an
s-unital (a left or/resp. right s-unital) ring. It is well known that in
an s-unital (a left, resp. right s-unital) ring R, for arbitrary elements
z,y there exists an element e such that ez = ze = z and ey = ye = y
(ex = x and ey = y, resp. ze = ¢ and ye = y). We call such an element
e a local (left, resp. right) unity for z and y. Also, it is known ([14],
Lemma) that if R is a left, resp. right s-unital ring, and for every two
elements r and y in R there exists a positive integer k¥ = k(z,y) and an
element e = e(z,y) such that z*e = z¥ and y*e = yF, resp. ex* = z*
and ey® = y*, then R is s-unital.

We state first some known results we will use in this paper. The
following two lemmas are well known and easy to prove.

Lemma 1. Let R be a ring with unity element 1, and z,y € R. If
zFy = (z + 1)k,y =0 or yz* = y(z + 1)", = 0 for some non-negative
integers k and k', then y = 0.

Lemma 2. Let x and y be given elements of an arbitrary ring R. If
[z,[z,y]] = 0, then [z*,y] = kz*~1[z,y] for all integers k > 1.

The next lemma, for f(X) € XZ[X] a fixed polynomial, is a very
special case of a result due to Streb ([14], Hauptsatz 3; see also [2],
Th. S), and is also generally valid by a result due to Bell ([6], Th. 1).

In the present form it was proved in a simple manner by this author
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([13], Lemma 3).
Lemma 3. Let R be a ring with the following property:

for arbitrary elements z,y in R there exists a polynomial

B0 4x) € X21X] such that [z,4] = [+, 411 (v).
Then R 13 commutative.

The first of the next two results is due to Kezlan and Bell, and
the second to Herstein.
Theorem KB ([5], Th. 1; [10], Theorem). Let f be a polynomial in
n non-commuting indeterminates X1,... , X, with (relatively prime)
coefficients. Then the following are equivalent:

1) for any ming R satisfying the polynomial identity

flzy,...,zn) =0 for allzq,... ,z, € R

the commutator ideal C = C(R) of R is a nil ideal;
2) for every prime p, the matriz ring R = My(GF(p)) fails to satisfy
the above identity;
3) every semi-prime ring R satisfying the above identity is commu-
tative.
Theorem H ([8], Theorem). Let R be a ring. If for each z € R there
exists a polynomial f(X) € XZ[X] such that z — f(z) € Z(R), then R

18 commutative.

4. Proofs

The next three lemmas concern a ring R which satisfies the condi-
tion (P4). The first of them shows that the ring R in all our theorems,
except for Th. 3, is in fact an s-unital ring. This will enable us to prove
these theorems for a ring with unity element 1 (see [9], Prop. 1).
Lemma 4. Let R be a left, resp. right s-unital ring satisfying (Py).
Then R is s-unital, provided for each F C R, |F| < 4, any one of the
following conditions is fulfilled:

1"y m(F) > 0, n(F) > 0; t(F) = 0 and m(F) > 1 or s(F) > 0,
or t(F) > 0 and s(F) > 0, resp. t'(F) = 0 and m(F) > 1 or
r(F)>0ors(F)>0, ort/(F)>0and r(F)=0;

2"y n(F)=0, m(F) > 1; and s(F) =0, resp. r(F) =0;

3" m(F)=0, n(F)>1; and t(F) =0, resp. t'(F) = 0.
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Proof. Let x and y be arbitrary elements of R, and e a left, resp. right
local unity for x and y. Set F' = {z,y,z + 1,y + 1}.
Case 1"): Let e be a left local unity for z and y. If ¢(F) = 0, then

'
e''le", 2] = +e"[e,x™])z°, hence z = ze™ £ z™* F z™ez?,

and thus, z € tRif m(F) > 1 or s(F) > 0. If ¢(F) > 0 and s(F) = 0,
then

- z"'[z"‘, elz! = £27[z,¢e™], i.e. 27T e™ = 2"t for z € {z,y}.

Let now ¢ be a right local unity for z and y. If t'(F) = 0, then

[e", z]e! = +c"[e,2™]z, hence z = ez & e a™ T F g™,

and thus, z € Rz if m(F) > 1 or r(F) > 0 or s(F) > 0. If /(F) > 0,
and r(F) =0, then
z'[z" elat = +[z,e™]e’, hence z = ™.

Case 2"): Let e be left, resp. right local unity for x,y. Then

for s(F)=0, z"[z,e™] =0, ie. 2Tl =2"Tle™

Tesp- for r(F)=0, [e,2™]z° =0, ie 2™ =ez™t?,

for z € {z,y}.
Casc 3"): For t(F) = 0 and a left local unity e resp. for ¢'(F) = 0
and a right local unity e, we have
e''[e”, ] =0, resp. [e", x]et =0,
hence,
x =ze™, resp. t =€e"z.
The next lemma we need only for the global case, but we state it
in the general local case:
Lemma 5. No matriz ring M,(GF(p)), p prime, can satisfy (Py),
such that for cach F' C R = M2(GF(p)), |F| <4, one of the following
conditions s fulfilled:
a) m(F) >0, n(F) >0, and m(F) >1 or s(F) > 0;
b) n(F) =0, m(F) >0, and r(F) =0 or s(F) =0 for m(F) even;
c) m(F)=0, n(F)=0, and t'(F) =0 or t(F) =0 for n(F") cven;
d) m(F) = 1,n(F) >0, s(F)=0; and t(F) > 0 or {(F) = 0 and
n(F) even, or n(F) and t'(F) — r(F') odd.
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Proof. Let e;; be the matrix in R with entree 1 on the position ¢, j,and
with 0 elsewhere. Set F = {e11,€22,€12,€12 + €21}-
Case a): = = e12 + €1 and y = ey for n(F') odd, resp. y = eqy
for n(F') even fail to satisfy (1). :
Case b): = = e12 + €21 and y = ey; for m(F') odd, and y = e;2,
T = ez3, resp. £ = e for m(F') even and t'(F) = 0, resp. t(F) = 0, fail
to satisfy (1).
Case c): Similar to Case b).
Case d): v = €11 and y = ey for t(F) > 0, and z = e12 + €21 and
y = e3 for t(F) = 0 and n(F') even or n(F) and t'(F) — r(F) odd, fail
to satisfy (1).
The following Lemma will be used in the proof of Th. 2 and that
of Th. 4, and thus we need its general local form:
Lemma 6 (cf. [2], Lemma 5). Let R be a ring with unity 1 which sat-
isfies (P4). Then every nilpotent element of R is central, i.e. N(R) C
C Z(R) provided for each FF C R, |F| < 4, one of the following condi-
tions 18 fulfilled:
i"y m(F)> 0, n(F)>0;, m(F)>1ors(F)>1; and F satisfies (8)*
for r(F) > 0, ezcept for n(F) =1, t'(F) = 0 or t(F) = 0, and
(8)* or (8)* if r(F) =0 and (m(F),n(F)) #1;
ii") n(F) =0, m(F) > 0 and F satisfies (8)*;
iii") m(F) =0, n(F) > 0 and F satisfies (8')*;
iv'"y m(F)=1, n(F) > 1, s(F) <1, and F satisfies (8'")* for s(F) =
= 0;
v m(F)=n(F) =1, s(F) <1, and for s(F) =0, F satisfies (1_)
and (8"")*.
Proof. Let z € R and a € N(R) be arbitrary, but fixed elements. We
have to prove that [z,a] = 0. Since @ € N(R), there exists a minimal
positive integer p such that

[z,a*] =0 for all integers &k > p.

If p = 1, we have nothing to prove. Suppose that p > 1 and set b =
= aP~ !, Then

(11) o[z, b] = [z,b%] = [z, b]b* for all integers k > 1
and
(11) bz, b] = —[z, blb.

We will prove that [z,b] = 0, which in view of the minimality
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of p contradicts to the assumption that p > 1. For this purpose set
F={z,b,z+1,b+1}.

Case i"): Setting b for y in (1), in view of (11) we get
(12) 2t [z, bzt = 0.
Now, setting b+ 1 in (1) and using (12), we obtain

z"[z(b+1)™](b+1)* = 0.

Since b+ 1 is invertible, the last equation, in view of (11) and Lemma 1
yields

(13) m[z,b] = 0.

If n = 1, then setting  + 1 for z in (12), we get

(z +1)"[z,8)(z + 1)* =0,
and if t = 0 or t' = 0, then by Lemma 1, follows [z,b] = 0. Also, for
r(F) > 0, (8)* and (13) imply [z,b] = 0. Let now r(F) = 0. Then for
n=1,t>0andt > 0, and also for n > 1, (1) with b, resp. = instead
of z, resp. y, gives

[b,z™]z® =0
and thus (1), for b+ 1, resp. = instead of z, resp. y, becomes
(6+1)¥[(b+ 1), z)(b+ 1) = 0.

In view of (11) and the invertibility of b+ 1, this yields

(13") ' nlz,b] = 0.

If (m,n) = 1, then (13) and (13') imply [z,b] = 0. If (m,n) # 1, then
we have (8)* or (8')*,and then (13) or (13') implies [z, b] = 0 again.

Case ii"): If n(F) =0, m(F) > 0, then (1) for y = b+ 1 becomes

"z, (b+1)"|(b+ 1) =0,
hence by (11) and the invertibility of b + 1, after applying Lemma 1,
we get m[z,b] = 0. This in view of (8)* implies [z, b] = 0.

Similarly, we can get [z,b] = 0 in Case ii").

Case iv"): If s(F) = 1, then (1) for y = b and the same equation
for y = b+ 1 easily give z™[z,b] = 0, and this using Lemma 1 implies
z,b] = 0.

0 Let now s(F') = 0. Setting b + 1 for z, and z for y in (1), we get
in view of (11) and (11'),
(n F1)[b,z] = (—nt' + nt £ r)b[b, z],
hence
(n F1)*z,b] =0,
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and thus, by (8")*, [z,8] = 0.
Case v"): For s = 1, we can get [z,b] = 0 as in Case iv'). Let
now s = 0. Then for z = b+ 1, and y = z, (1-) becomes
(b+1)¥[b,2](b+ 1) = —(b+1)7[b, ],
hence, in view of (11) and (11') we have
2[z,b] = (—t' +t — r)b[z,b], ie. 2%[z,b] =0,
which by (8")* gives [z,8] = 0. ¢

Now we can go to the proofs of our theorems.

By Lemma. 4, all rings in our theorems, except for Th. 3, are s-
unital, and according to ([9], Prop. 1) we can and will assume that, in
all these theorems, R is a ring with unity 1.

Proof of Th. 1. In view of (4) and Lemma 2, the identity (1) is
equivalent with (5), and also with

(14) LIIt_H [xn,y] — [.'En,y]:L'H_tl — imr[w,ym]ys — j:ys[x,ym]mr'

From (14) and Lemma 4 we easily see that R is s-unital. Now we can
assume that R is a ring with unity 1. We fix z and y in R, and set
F={z,y,z+1,y+1}.

Case 1): Setting in (5) y 4+ 1 for y, and combining equality (5)
with the obtained one, we get

ma"[z,y)(1 - f(y)) =0,
hence, using Lemma, 1,
(15) mlz,y] = mlz, y]f(y),
where f(X) € XZ[X] is given by (9). Similarly, from (5), if r(F) = 0,
we get
(1) n[z,y] = n[z, ylf'(v),

where f'(X) € XZ[X] is given by (9').
Using (15) and Lemma 1, from (5) we easily obtain

(16) nlz,y] = nlz, y|f(v),
and similarly, from (5) and (15'), if 7(F) = 0 we can get
(16") m[z,y] = mlz,y]f'(y).

If r(F) > 0, then by assumption, F' satisfies (8), and thus (15)
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implies
(17) [z, 9] = [z, y]kf(y)-

Let now r(F)=0. If (m,n) = 1, then from (15) and (16), resp.
(15") and (16') follows (17), resp.

(17" [z,y] = [z, 9]k f'(y).

If (m,n) # 1, then, by assumption, F satisfies (8) or (8'), and thus (15)
implies (17) or (15') implies (17).

Case 2): In this case instead of (5) we have

mz"[z,yly™T*~! =0, resp. n[m,y]m”'*'t'*'tl_l =0,
which by applying Lemma 1 give
m[m’y] = 0’ resp' n[$7y] = 07

i.e. in view of (8)*, resp. (8')*, [z,y] = 0.

Case 3): Since m = 1, and s = 0, in this case (5) becomes

nlz,ylz"tst "1 = +[z,ylz" for all z,y € F.
From this equation we easily get
(n F D[z, 9] = [=,9]"(y),

where f''(X) € XZ[X] is given by (9"). But the last equation, in view
of (8"), implies

(17) [z,y] = [z, y]&" f" (v).

Case 4): Now (5_) becomes
[z,y]zttt = —[z,y]z” for all z,y € F.
This implies
2[z,y] = [=, 9] /" (y),
i.e. by (8"),

(17///) [l',y] — [x’y]klllflll(y),

where f'"'(X) € XZ[X] is given by (9").
Thus, the ring R in Th. 1 satisfies the condition of Lemma 3, and
so R is commutative. {

Remark. Since obviously, for every prime p, the matrix ring R =
= M,(GF(p)) fails to satisfy (4), then by Th. KB, for every ring R, (4)
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implies

(4") [z,y] € N(R) forall z,ye€R. ,
For an s-unital (a left, resp. right s-unital) ring R in Th. 1, we can
replace (4) by the weaker condition (4'), assuming the conditions i)~
v"") of Lemma 6 (and the conditions 1")-3") of Lemma 4) were satisfied.
Namely (by Lemma 4, R is unital, and) we can assume that R has a
unity 1. Moreover, according to Lemma 6, N(R) C Z(R), hence by (4),
[z,y] € Z(R) for all z,y € R, and especially we have (4).

Proof of Th. 2. By Lemma 4, the ring R in this theorem is s-unital..
and we can assume that R is with unity 1. But, then, according to
Lemma 6, N(R) C Z(R). Since, moreover, R satisfies (I-N), R in fact
satisfies the conditions in Th. H, and hence R is commutative. ¢
Proof of Th. 3. By Lemma 5, no matrix ring M,(GF(p)), p prime,
can satisfy (P) in situation of Th. 3. Since R is semi-prime and R
satisfies (P), R must be commutative in view of Th. KB. ¢

Proof of Th. 4. According to Lemma 4, the ring R in this theorem
is s-unital, and thus we can assume that R is a ring with unity 1. But,
then R satisfies all conditions of Lemma 6, and thus, N(R) C Z(R).
Moreover, in the situation of Th. 4, in view of Lemma 5, no matrix ring
M,y(GF(p)), p prime, can satisfy (P), hence in view of Th. KB, C(R) C
C N(R). Therefore, C(R) C Z(R), and thus R satisfies all conditions
of Th. 1, and so R is commutative. ¢

Proof of Th. 5. The ring R in this theorem obviously satisfies con-
dition 1') of Lemma 4. Therefore, R is s-unital, and so we can assume
that R is a ring with unity 1. Moreover, since m; > 1 or s; > 0,
similarly as we have got m|z,b] = 0 in the proof of Lemma 6, we can
get m;j[z,b] = 0 for all j € J. But, this with (m;: j € J) = 1 implies
[,0] = 0. Hence N(R) C Z(R). Also, for each j € J, R satisfies
condition 1") of Lemma 5, and thus, in view of Th. KB, C(R) C N(R).
Hence, C(R) C Z(R), and R surely satisfies (4). Now, as in the proof
of Th. 1, we can prove that »

(15) mjle,y] = m;[z,y]fi(y) for all =,y € J,
where f;(X) € XZ[X]. This, in view of (m;: j € J) = 1, yields
(2] = [2,4] Y mym! f5(y) for all 2,y € B,
=
and some integers m} (j € J). Therefore, R is commutative according
to Lemma 3.
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For the appropriate examples in the local, resp. global case, and
also for other related results, we refer to [1] and [4], resp. [2] and [3].

We give here an example showing that a ring R can satisfy a local
condition of the form (P,), which seems to does not satisfy a global
condition of the form (P).
Example 1. Let M = M(p) be the ring of all infinite lower triangular
matrices over a Galois field GF(p), p prime, and k be a positive integer.
We denote by My = M} (p) the subring of M generated by the identity
matrix I and all matrices (a;j) € M such that a;; = 0for: =1,2,...
and a;; =0for¢ > k,orj > k. Let R be the union of all the M. Then
R is a ring with unity I.

The regular matrices in Mj; form a finite group of order
(p — 1)_11316_(%z =: my and thus, a™* = I for all regular matrices a €
€ Mj. A non-regular matrix b € My is nilpotent, and b* = 0 for all
such matrices b. For sufficiently large p, we have m; > k, and hence

(18) ™ € Z(R) for all z € M.

Now, for each finite subset F' of R, there exists an integer k such
that F' C M}, and thus for

(19) m = m(F) = mg,n = n(F) = o(F)my

and arbitrary non-negative integers r = r(F), s = s(F'), t = t(F') and
t' = ¢/(F) we have -

2t [z", Y]zt = £27[z, ym]y® for all z,y € F.

Thereby, 0 = o(F) is a non-negative integer. Especially, the ring
R satisfies a condition of the form (P4). Since R is obviously non-
commutative, R fails to satisfy some of the additional conditions in our
Th. 1 and Th. 2. Actually, the condition (8)* is not fulfilled, and thus
also the condition (8) cannot be satisfied. Namely, for b = e;; € My,
k > 1, we have b2 = 0. On the other hand, for z = e € Mg, k > 2,
we have

mylz,b] =0, but [z,b] =ex #0.

We remark that in view of (18), C(R) C N(R) by a well known result
due to Herstein [7].
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