MEROMORPHIC STARLIKE UNI-VALENT FUNCTIONS WITH AL-TERNATING COEFFICIENTS

M. K. Aouf

Department of Mathematics, Faculty of Science, University Mansoura, Egypt

H. E. Darwish

Department of Mathematics, Faculty of Science, University Mansoura, Egypt

Received June 1994

AMS Subject Classification: 30 C 45, 30 C 50

Keywords: Regular, starlike, meromorphic, alternating coefficients.

Abstract: Coefficient estimates and distortion theorems are obtained for meromorphic starlike univalent functions with alternating coefficients. Further class preserving integral operators are obtained.

1. Introduction

Let Σ denote the class of functions of the form

(1.1)
$$f(z) = \frac{1}{z} + \sum_{m=1}^{\infty} a_m z^m$$

which are regular in the punctured disc $U^* = \{z : 0 < |z| < 1\}$. Define

$$D^0 f(z) = f(z),$$

$$D^{1}f(z) = \frac{1}{z} + 3a_{1}z + 4a_{2}z^{2} + \frac{(z^{2}f(z))'}{z}.$$
$$D^{2}f(z) = D(D^{1}f(z)).$$

and for n = 1, 2, 3, ...

$$D^{n}f(z) = D(D^{n-1}f(z)) = \frac{1}{z} + \sum_{m=1}^{\infty} (m+2)^{n} a_{m} z^{m} = \frac{(zD^{n-1}f(z))'}{z}.$$

In [4] Uralegaddi and Somanatha obtained a new criteria for meromorphic starlike univalent functions via the basic inclusion relationship $B_{n+1}(\alpha) \subset B_n(\alpha)$, $0 \le \alpha < 1$, $n \in \mathbb{N}_0 = \{0, 1, ...\}$, where $B_n(\alpha)$ is the class consisting of functions in \sum satisfying

(1.2)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^nf(z)} - 2\right\} < -\alpha, \quad |z| < 1, \quad 0 \le \alpha < 1, \quad n \in \mathbb{N}_0.$$

The condition (1.2) is equivalent to

(1.3)
$$\frac{D^{n+1}f(z)}{D^nf(z)} = \frac{1 + (3 - 2\alpha)w(z)}{1 + w(z)},$$

 $w(z) \in H = \{ w \text{ regular}, w(0) = 0 \text{ and } |w(z)| < 1, z \in U = \{ z : |z| < 1 \} \},$ or, equivalently,

(1.4)
$$\left| \frac{\frac{D^{n+1}f(z)}{D^nf(z)} - 1}{\frac{D^{n+1}f(z)}{D^nf(z)} + 2\alpha - 3} \right| < 1.$$

We note that $B_0(\alpha) = \Sigma^*(\alpha)$, is the class of meromorphically starlike functions of order α (0 $\leq \alpha < 1$) and $B_0(0) = \Sigma^*$, is the class of meromorphically starlike functions.

Let σ_A be the subclass of Σ which consists of functions of the form

(1.5)
$$f(z) = \frac{1}{z} + a_1 z - a_2 z^2 + a_3 z^3 \dots = \frac{1}{2} + \sum_{m=1}^{\infty} (-1)^{m-1} a_m z^m, \quad a_m \ge 0$$

and let $\sigma_{A,n}^*(\alpha) = B_n(\alpha) \cap \sigma_A$.

In this paper coefficient inequalities, distortion theorems for the class $\sigma_{A,n}^*(\alpha)$ are determined. Techniques used are similar to these of Silverman [2] and Uralegaddi and Ganigi [3]. Finally, the class preserving integral operators of the form

(1.6)
$$F(z) = \frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) dt \qquad (c > 0)$$

is considered.

2. Coefficient inequalities

Theorem 1. Let $f(z) = \frac{1}{z} + \sum_{m=1}^{\infty} a_m z^m$. If

(2.1)
$$\sum_{m=1}^{\infty} (m+2)^n (m+\alpha) |a_m| \le (1-\alpha),$$

then $f(z) \in B_n(\alpha)$.

Proof. Suppose (2.1) holds for all admissible values of α and n. It suffices to show that

$$\left| \frac{\frac{D^{n+1}f(z)}{D^nf(z)} - 1}{\frac{D^{n+1}f(z)}{D^nf(z)} + 2\alpha - 3} \right| < 1 \quad \text{for } |z| < 1.$$

We have

$$\left| \frac{\frac{D^{n+1}f(z)}{D^nf(z)} - 1}{\frac{D^{n+1}f(z)}{D^nf(z)} + 2\alpha - 3} \right| = \left| \frac{\sum_{m=1}^{\infty} (m+2)^n (m+1) a_m z^{m+1}}{2(1-\alpha) - \sum_{m=1}^{\infty} (m+2)^n (m-1+2\alpha) a_m z^{m+1}} \right| \le$$

$$\leq \frac{\sum\limits_{m=1}^{\infty} (m+2)^n (m+1)|a_m|}{2(1-\alpha) - \sum\limits_{m=1}^{\infty} (m+2)^n (m-1+2\alpha)|a_m|}.$$

The last expression is bounded above by 1, provided

$$\sum_{m=1}^{\infty} (m+2)^n (m+1) |a_m| \le 2(1-\alpha) - \sum_{m=1}^{\infty} (m+2)^n (m-1+2\alpha) |a_m|$$

which is equivalent to (2.1), and this is true by hypothesis. \Diamond

For functions in $\sigma_{A,n}^*(\alpha)$ the converse of the above theorem is also true.

Theorem 2. A function f(z) in σ_A is in $\sigma_{A,n}^*(\alpha)$ if and only if

(2.2)
$$\sum_{m=1}^{\infty} (m+2)^n (m+\alpha) a_m \le (1-\alpha).$$

Proof. In view of Th. 1 it suffices to show the only if part. Suppose

(2.3)
$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)} - 2\right\} = \left\{\frac{-\frac{1}{z} + \sum_{m=1}^{\infty} (-1)^{m-1} (m+1)^{n} m a_{m} z^{m}}{\frac{1}{z} + \sum_{m=1}^{\infty} (-1)^{m-1} (m+2)^{n} a_{m} z^{m}}\right\} < -\alpha.$$

Choose values of z on the real axis so that $\left(\frac{D^{n+1}f(z)}{D^nf(z)}-2\right)$ is real. Upon clearing the denominator in (2.3) and letting $z \to -1$ through real values, we obtain

$$1 - \sum_{m=1}^{\infty} (m+2)^n m a_m \ge \alpha \left(1 + \sum_{m=1}^{\infty} (m+2)^n a_m \right)$$

which is equivalent to (2.2). \Diamond

Corollary 1. Let the function f(z) defined by (1.5) be in the class $\sigma_{A,n}^*(\alpha)$. Then

$$a_m \le \frac{(1-\alpha)}{(m+2)^n(m+\alpha)} \qquad (m \ge 1).$$

Equality holds for the functions of the form

$$f_m(z) = \frac{1}{z} + (-1)^{m-1} \frac{(1-\alpha)}{(m+2)^n (m+\alpha)} z^m.$$

3. Distortion theorems

Theorem 3. Let the function f(z) defined by (1.5) be in the class $\sigma_{A,n}^*(\alpha)$. Then for 0 < |z| = r < 1,

(3.1)
$$\frac{1}{r} - \frac{1-\alpha}{3^n(1+\alpha)}r \le |f(z)| \le \frac{1}{r} + \frac{1-\alpha}{3^n(1+\alpha)}r$$

with equality for the function

(3.2)
$$f(z) = \frac{1}{z} + \frac{1 - \alpha}{3^n (1 + \alpha)} z \quad \text{at } z = r, ir.$$

Proof. Suppose f(z) is in $\sigma_{A,n}^*(\alpha)$. In view of Th. 2, we have

$$3^{n}(1+\alpha)\sum_{m=1}^{\infty}a_{m} \leq \sum_{m=1}^{\infty}(m+2)^{n}(m+\alpha)a_{m} \leq (1-\alpha)$$

which evidently yields

$$\sum_{m=1}^{\infty} a_m \le \frac{1-\alpha}{3^n(1+\alpha)}.$$

Consequently, we obtain

$$|f(z)| \le \frac{1}{r} + \sum_{m=1}^{\infty} a_m r^m \le \frac{1}{r} + r \sum_{m=1}^{\infty} a_m \le \frac{1}{r} + \frac{1-\alpha}{3^n (1+\alpha)} r.$$

Also

$$|f(z)| \ge \frac{1}{r} - \sum_{m=1}^{\infty} a_m r^m \ge \frac{1}{r} - r \sum_{m=1}^{\infty} a_m \ge \frac{1}{r} - \frac{1-\alpha}{3^n (1+\alpha)} r.$$

Hence the results (3.1) follow. \Diamond

Theorem 4. Let the function f(z) defined by (1.5) be in the class $\sigma_{A,n}^*(\alpha)$. Then for 0 < |z| = r < 1,

(3.3)
$$\frac{1}{r^2} - \frac{1-\alpha}{3^n(1+\alpha)} \le |f'(z)| \le \frac{1}{r^2} + \frac{1-\alpha}{3^n(1+\alpha)}.$$

The result is sharp, the extremal function being of the form (3.2). **Proof.** From Th. 2, we have

$$3^{n}(1+\alpha)\sum_{m=1}^{\infty}ma_{m}\leq\sum_{m=1}^{\infty}(m+2)^{n}(m+\alpha)a_{m}\leq(1-\alpha)$$

which evidently yields

$$\sum_{m=1}^{\infty} m a_m \le \frac{1-\alpha}{3^n(1+\alpha)}.$$

Consequently, we obtain

$$|f'(z)| \le \frac{1}{r^2} + \sum_{m=1}^{\infty} m a_m r^{m-1} \le \frac{1}{r^2} + \sum_{m=1}^{\infty} m a_m \le \frac{1}{r^2} + \frac{1-\alpha}{3^n (1+\alpha)}.$$

Also

$$|f'(z)| \ge \frac{1}{r^2} - \sum_{m=1}^{\infty} m a_m r^{m-1} \ge \frac{1}{r^2} - \sum_{m=1}^{\infty} m a_m \ge \frac{1}{r^2} - \frac{1-\alpha}{3^n (1+\alpha)}.$$

This completes the proof. \Diamond

Putting n = 0 in Th. 4, we get

Corollary 2. Let the function f(z) defined by (1.5) be in the class $\sigma_{A,0}^*(\alpha) = \sigma_A^*(\alpha)$. Then for 0 < |z| = r < 1,

$$\frac{1}{r^2} - \frac{1 - \alpha}{1 + \alpha} \le |f'(z)| \le \frac{1}{r^2} + \frac{1 - \alpha}{1 + \alpha}.$$

The result is sharp.

We observe that our result in Cor. 2 improves the result of Uralegaddi and Ganigi [3, Th. 3 (Equation 4)].

4. Class preserving integral operators

In this section we consider the class preserving integral operators of the form (1.6).

Theorem 5. Let the function f(z) be defined by (1.5) be in the class $\sigma_{A,n}^*(\alpha)$. Then

$$F(z) = cz^{-c-1} \int_{0}^{z} t^{c} f(t) dt = \frac{1}{z} + \sum_{m=1}^{\infty} (-1)^{m-1} \frac{c}{c+m+1} a_{m} z^{m}, \quad c > 0$$

belongs to the class $\sigma_{A,n}^*(\beta(\alpha,n,c))$, where

$$\beta(\alpha, n, c) = \frac{(1+\alpha)(c+2) - c(1-\alpha)}{(1+\alpha)(c+2) + c(1-\alpha)}.$$

The result is sharp for

$$f(z) = \frac{1}{z} + \frac{1-\alpha}{3^n(1+\alpha)}z.$$

Proof. Suppose $f(z) \in \sigma_{A,n}^*(\alpha)$, then

$$\sum_{m=1}^{\infty} (m+2)^n (m+\alpha) a_m \le (1-\alpha).$$

In view of Th. 2 we shall find the largest value of β for which

$$\sum_{m=1}^{\infty} \frac{(m+2)^n (m+\beta)}{(1-\beta)} \cdot \frac{c}{c+m+1} a_m \le 1.$$

It suffices to find the range of values of β for which

$$\frac{c(m+2)^n(m+\beta)}{(1-\beta)(c+m+1)} \le \frac{(m+2)^n(m+\alpha)}{(1-\alpha)} \quad \text{for each } m.$$

Solving the above inequality for β we obtain

$$\beta \le \frac{(m+\alpha)(c+m+1) - mc(1-\alpha)}{(m+\alpha)(c+m+1) + c(1-\alpha)}.$$

For each α and c fixed let

$$F(m) = \frac{(m+\alpha)(c+m+1) - mc(1-\alpha)}{(m+\alpha)(c+m+1) + c(1-\alpha)}.$$

Then

$$F(m+1) - F(m) = \frac{A}{B} > 0 \quad \text{for each } m,$$

where

$$A = c(m+1)(m+2)(1-\alpha)$$

and

$$B = [(m+1+\alpha)(c+m+2)+c(1-\alpha)][(m+\alpha)(c+m+1)+c(1-\alpha)].$$
 Hence $F(m)$ is an increasing function of m . Since

$$F(1) = \frac{(1+\alpha)(c+2) - c(1-\alpha)}{(1+\alpha)(c+2) + c(1-\alpha)}$$

the result follows. \Diamond

248 M. K. Aouf and H. E. Darwish: Meromorphic starlike univalent functions

Remark. Putting n = 0 in the above theorems, we have the results obtained by Uralegaddi and Ganigi [3].

References

- [1] GANIGI, M. D. and URALEGADDI, B. A.: New criteria for meromorphic univalent functions, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* (N.S.) 33 (81) (1989), no. 1, 9-13.
- [2] SILVERMAN, H.: Univalent functions with negative coefficients, *Proc. Amer. Math. Soc.* 51, (1975), 109-116.
- [3] URALEGADDI, B. A. and GANIGI, M. D.: Meromorphic starlike functions with alternating coefficients, Rend. Mat. Roma (7) 11 (1991), 441-446.
- [4] URALEGADDI, B. A. and SOMANATHA, C.: New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), 137-140.