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Abstract: Description of the form of solutions f: R—R of the functional
equation f(z + a(z)) = f(z) + f(a(z)) is given in the case where a: RT R+
is an involution (¢ o a = id). When o(z) = %, formal power series to the
above equation are also determined.

The present paper was motivated by the following problem pro-
posed by K. Lajké on the XX. International Symposium on Functional
Equations (Oberwolfach, 1982, cf. [3]): under what conditions the func-
tions
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(%) f(z) = az® + bz + 2a, a,b€R,
are the only solutions of the equation

(1)  flz+1/z) = f(z)+ f(1/z), z € RT (= (0,400))?
We give another proof of Lajké’s conjecture that (%) is the only

solution of (1) in the class of formal power series, some remarks on the
general solution of the equation

2)  flz+a(@)=f(z)+ fla(z)), o(a(z))=2z, z€RY,

and a theorem on the form of solutions of the equation

(3) f(¢(z) + () = f(#(2)) + f(¥(2)), = €RT,

with some specified ¢ and .
The equations (1)—(3) are Cauchy’s equations restricted to a graph

of a given function which were recently studied by many authors, cf.,

e.g., W. Jarczyk [2] and the references quoted therein. In particular,
equation (2) has been dealt with by J. Matkowski and M. Sablik [4], cf.

the last section of our paper.

1. Let F be the linear space (over R) of all formal power series

o0

F = {f(a:) = Z arz®, ar € R}

k=—oc0

and consider the mapping F': F — F, given by
[F(f)(z) = f(z +1/2) — f(z) - f(1/2), f € F, ¢ €R™.

The mapping F' is linear and solving (1) means determining ker F. We
have F(1) = —1, F(z) = 0, F(2?) = 2, so that the series (%) belongs
to ker F. Let us examine F(z*) where k € Z \ {0,1,2}. Since, for
ke N\ {0,1,2} we have

k-1
E\ ..
F k — k ) —k 2i—k
(z%) =2z" + 2z —{—;(z)m
and for k = —m, m € N,
F(z™) = (Z x2i+1)m Yz g™,
1=0

we see that any system {F(z*),...,F(z*)}, k; € 7\ {0,1,2} is lin-
early independent over R. Thus the series (%) are the only solutions of
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(1) in F.

2. We shall deal with equation (2) under the following hypotheses:
(H) The function a: Rt — RT is a continuous, strictly decreasing

involution (@ o @ = id), mapping bijectively R onto itself, and

the function ¢g: R* — R¥, given by

g(z) := z + o(z), z € RT,

is strictly increasing on [c¢,+), where ¢ = a(c).
Let us observe that ¢ is the only fixed point of a, we have lir% a(z) =
=400, lim a(z) = 0, ¢ maps [¢,+00) bijectively onto [2¢,+00), and
the sequence

zn = g"(c), n€NU{0}

(where g™ denotes the n-th iterate of the function g) is strictly increas-
ing and unbounded, so that

(4) [267 +OO) = U [xkvl‘k-i-l)'
k=1
Let ¢; == ¢ | [z;_1,5:)- Thus g; is an increasing continuous bijective
function from [z;-1,z;) onto [z;,z,11). Let us put
h; =gt

Therefore h;: [zi—1, %) — [T4, Tit1).
We have the following

Theorem 1. Under hypotheses (H), if fo: (0,2¢c) — R is an arbitrary
function, then the function

fo(z) if z € (0,2¢),
(6) f(z)={ foohjo...ohi(z) + fooaohjo...ohi(z)+ fooaohyp
o...0hij(z) + ...+ fooaohi(z) ifz € [zi,Tit1), 1 €N
is a solution of equation (2). If fo is continuous then so is f.
Proof. a) z € [¢c,+00). Let first z € [c,2¢). Then g(z) = g1(z) €
€ [z1,22), a(z) € (0,c) and from (4) we get
fz+a(z)) = fog(z)=foohiog(z) + fooaoh og(z) =
= fo(z) + fola(z)) = f(2) + fa(=))
and (1) is satisfied. Suppose now that f given by (4) satisfies (2) when-

ever T € [zg,Z,) and let 2 € [z,, Tpt1). We have gpp1(z) =z 4+ a(z) €
€ [Tn41,Znt2), and from (5) we obtain (since h,y1 0 gpyy =id)
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flz+a(z))=fognti(z)=foohio...0h,(z)+ fooaohjo
o...0hp(z)+ ...+ fooaohy(z)+ fo0oa(z) = f(z) + f o a(z).

Induction completes the proof in the case where z € [c, +00).

b) z € (0,c). Then y = a(z) € (¢, +00). Moreover ¢(y) = ¢ o
o ¢(z) = x, since ¢ is an involution. Thus we may apply case a) and
write

fle+a(z)) = faly) +y) = fla()) + f(y) = f(2) + f(a(2)).

The continuity of f follows from (H) and the continuity of fy. ¢
Now we are going to prove that the extension of fy to f, given by
(5), is unique.
Theorem 2. Let (H) be satisfied and let fy: (0,2¢c) — R be any func-
tion. There exists the unique solution f of equation (2) which coincides
with fo on (0,2¢).
Proof. Suppose we are given two solutions: f and f* of (2) such that

(6) f(z) = f*(z) for =z €(0,2c)
and that there is a t € (0,2c) such that f() # f*(¢). Because of (4),
z € [zi,ziy1) for some ¢ € N, thus A(t) € [z;—1, ;) and
(7) t=g;0 hz(t) = hz(t) +ao h,‘(f)
and « o hi(t) € (0,c). We now use (2) and (7) to get

f@) =fohi(t)+foaohi(t)# f*(t) = f*ohi(t) + f* oo hy(t).
But the second terms here are equal, because of (5), so we end up with
fohi(t) # f* o hi(t). Now, by the same argument with h;(¢) in place
of t we arrive at f o hj_1 0 hi(t) # f* o hi—1 o h;(t) and eventually at
fohio...oh;i(t) # f*ohio...0hi(t). Since hjo...0h;(t) here belongs
to [z, 1] = [¢,2¢) C (0, 2¢), we get a contradiction with (5). ¢

As a consequence of this theorem we get the following

Corollary. If (H) holds then every solution of equation (2) is given by
the construction (4).
Proof. Indeed, let f* be a solution of (2). Take the solution f of (2)
given by (4) with fo = f* | (0,2c). According to Th. 2, since f and f*
coincide on (0, 2¢), there is f = f*.
Remarks. (1) The interval (0, 2¢) is the maximal set on which one may
arbitrarily prescribe a solution to (2). Indeed, given any set M C (0, 2c¢)
let us take an zq € (0,2¢) \ M such that f(z¢) can be determined with
the use of the values of f given on M. Since f satisfies (2), the following
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may happen: either there is an z such that zo = z + a(z) = g(z) <
< 2¢, contrary to g(z) > 2¢; or (2) is satisfied either with zo, then
2o +a(zg) > 2c or for an y such that zo = a(y), then y +a(y) > 2¢. In
the latter case both arguments do not belong to M, so that the value
of f is not defined, contrary to the hypothesis.

(2) Since the function a(z) = 1/z, ¢ € RY, satisfies hypothesis
(H), Th. 1 determines also the general solution of equation (1).

(3) The solutions of (2) defined on (—o0, 0), respectively on R\ {0},
can be described in a similar way as those defined on R.

3. The following result by J. Matkowski and M. Sablik ([4], Th.
4) yields another construction of the general solution to (2) under more
general assumptions than (H).
Proposition. Let a: Rt — R be an involution satisfying a(c) = ¢
and a((0,c)) C (¢, +0) and a((c,+00)) C (0,c). Then every function
fo: (¢, +00) — R such that

(7) fo(2¢) = 2fo(c)

can uniquely be extended to a solution f: Rt — R of equation (2).
Moreover, if a and fo are continuous then so is f.

An analogous result can be obtained for equation (3), i.e., for
the Cauchy equation on the graph of a parametrically given curve

(¢(z),%(z))-

Theorem 3. Let ¢, : RT — RT satisfy ¢(c) = ¢, #((0,¢)) C (¢, +00),
¢((c,+00)) C (0,c) and

(8) ¢otp(z) = ¢(z) for = € (0,c] and op(z) = ¢(z) for z € (¢, +00).

Then every function fo: [c,+00) — R satisfying (7) can uniquely be
extended to a solution f: RY — R of equation (3). Moreover, if ¢, ¢
and fy are continuous then so is f.

Proof. Given an fy as claimed we define f as follows
fo(z + ¢(2)) — fo(é(z)) if z € (0,¢),
®  J@-{ .
fo(z) if z € [¢,+00)
The function f is well defined since z € (0,c¢) implies ¢(z) > c and

z + é(z) > c. If z € (0,c), then from (8) we get 1(z) € (0,c) so that
$(z) + () € (¢, +00) and
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fod(z)+ fo(z) = food(z)+ fo((z) + dot(z)) — foodog(z) =
= fo(é(z) + (=) = f(4(z) + ¥(z))-

If z € (c,+00), then ¢(z) € (0,¢), ¢ o ¢(z) € (¢, +00), whence ¢(z) €
€ (¢,400), ¢(z) + ¢¥(z) € (¢,+00). Therefore

fod(z)+ fop(z)= fod(z)+ ¢dog(z))— foodod(z)+ footp(z)=
= fo(¢(z) + ¥(2)) = f(d(z) + ¥ (=)

For z = ¢, (3) results from (7).

If the functions involved in its definition are continuous, then the
continuity of f given by (9) is obvious for z # ¢, whereas for z = c it
results from (7) and (9). ¢
Concluding remark. The question (cf. [1]) under what conditions
equation (2) has linear solutions only (or a finite-parameter family of
solutions) remains unanswered. In this connection, during the XXXI
International Symposium on Functional Equations (August 1993, De-
brecen), J. Matkowski proposed the following, more adequate, problem:

Consider the system of functional equations (2) with two given
involutions and establish conditions under which the only solution to
the system is the identity function.
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