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Abstract: The paper deals with some generalisation of recurrent manifolds.
First, a few general statements are proved. Next, conformally flat manifolds
are considered and the local structure theorem is proved. It appears that the

manifolds under consideration belong to the class of subprojective spaces.

1. Introduction

Investigating conformally flat Riemannian manifolds of class one,
1.e. manifolds characterized by the property that at least n— 1 principal
normal curvatures — the eigenvalues of the second fundamental form

— are equal to one another, R. N. Sen and M. C. Chaki ([5]) found
that if the remaining one is zero, then the curvature tensor satisfies
(1) Rnijen = 2aiRpijk + anRuijk + aiRnijk + a; Rpik + axRuiji,
where the “comma” denotes covariant derivative with respect to the
metric. Hereafter, Riemannian manifolds with condition (1) imposed
on the curvature tensor were examined by M. C. Chaki ([1]) and M.
C. Chaki and U. C. De ([2]). The first author called such manifolds
pseudo symmetric since, as he claimed, the locally symmetric manifold
satisfies (1) with a; = 0.
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In the present paper we shall consider a Riemannian manifold
with not necessarily definite metric ¢ whose curvature tensor satisfies
(1). First of all we shall show that on a recurrent manifold, i.e. on a
manifold whose curvature tensor satisfies :

(2) RhijklIqursv - RhiijpqrsIl = 07

the condition (1) holds at each point where the curvature tensor does
not vanish. We shall also give further motivation for consideration of
the condition (1). Moreover, we shall prove that on a neighbourhood
of a generic point the vector a; is a gradient. Then conformally flat
manifolds satisfying (1) will be considered. We shall give necessary
and sufficient conditions so that conformally flat manifold satisfies (1).
Finally, the local structure theorem will be proved.

Throughout the paper all manifolds under consideration are as-
sumed to be smooth connected Hausdorff manifolds and their metrics
need not be definite. In the sequel we shall use the following lemmas.
Lemma 1 ([6]). The curvature tensor of an arbitrary manifold (M,g)
satisfies the equation

Rpijiqim) + Rikimini + Rimnirgjr) = 0

Lemma 2 ([3], Lemma 1). Let M be a Riemannian manifold of dimen-
sion n > 3. If Bhiji i3 a tensor field on M such that

Bhijk = =Binjk = Bjkni,  Bhijk + Bhjri + Brkij = 0,

Bhijriim) = 0,
and aj, A; are vector fields on M satisfying
, - a; Rk = gij Ak — gir A,
the_n ' A

5 ,
A; [Bhijk — m(gijghk - gikghj) =0,

where S = BpgregPgi™-
A space of affine connection is said to be subprojective if both:
(a) under the mapping onto pseudo-euclidean space, the image of each .
geodesic is contained in two-dimensional plane,
(b) all such planes have either a common point or are parallel to each
other ([4], p. 164).
Lemma 3 ([4], p- 184). A Riemannian manifold (M,g) (dim M > 3)
18 subprojective iff it 18 conformally flat and
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R B
Rij - An—D)% = P(v)gi; + Q(v)viivyj,

where v 18 some non-constant function.

Lemma 4 ([4], p. 176). If (M, g) is a subprojective Riemannian man-
ifold, then in a neighbourhood of each point there exists a coordinate
system z',... ,z™ such that the metric takes the form either

3) ds? = (da')? + pP(st)ds?,
where ds? = fydz®dz® is a metric of an (n — 1)-dimensional space of
constant curvature E, or

4 ds? = 2dztdz? + p?(zl)ds?,
2

where dsi = hapdz®dz® is a metric of an (n — 2)-dimensional pseudo-
euclidean space.

2. General results

Proposition 1. If the curvature tensor of the manifold M satisfies
(5) quralt = btqurs,

then the relation (1) holds on M, where a; = 1b;.

Proof. From (5), in virtue of the Bianchi identity, we obtain

(6) beRpgre = boRpgrt + brRpgs.

On the other hand, we have

2 1 1
Rpijkn = Zbth”k + Zbthijk + Zbthiik'

Applying (6) to the second and to the third component on the left
hand side of the above equation, respectively to the indices (A, :,[) and
(7,k,1), we easily obtain (1). ¢
Proposition 2. If
(7) Rhijkll = Z$i1Ri2i3i4i57

P
where the sum includes all permutation p of the indices (h,t,7,k,1) and

{5 = (51, e ,5,1)} 18 ¢ set of some vectors, then there exists a vector
a; such that relation (1) holds.

Proof. It is easy to verify that there exist vectors a;, b;, such that
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g
> wRiyiyisis = @tRnije + biRukij,
g

where the sum includes all permutations g of the indices (h,1,j, k).
Hence the equation (7) takes the form

®) Rpijen = aiRpijk + biRpkij + cnRuijx + dn Rikij + eiRpije+
+fiRukij + 9;Ruitk + hjRurir + ik Ruiji + JxReuij

for some vectors ai,...,J;. Changing in (8) indices (h,%,j,k) into
(k, 7,1, h) respectively and adding the obtained equation to (8) we find

2Rpijkn = 2(aiRnijk + biRprij)+
(9) +ApRiijk + BoRikij + CiRuijk + DiRprij+
+AgRhiji + BrRuiij + CjRpi + DjRekit

for vectors a;, b; and some vectors A;, By, Ci, D;. Alternating (9) in
(h,1) and the resulting equation in (j, k) we get

(10)  8Rpijkn = wiRnijk + thRuijx + tiRutjk + ¢ Rtk + te Rhiji,
where t, = 245, + 2Cy, — By — Dy, w; = 8a; — 4b;. Permuting in (10)
indices (h,i,!) and adding the obtained equations to (10), we find
1
tpRiijr + tiRpjx = —i(wthijk + wpRijk + wiRinjk) + tiRnijk-
Analogically, permuting in (10) indices (7, k£, [), we obtain |
1
tiRpak + e Rpiji = —g(wth_ijk + w;Rhikt + wi Rpiy) + tiRpije.
Substituting the above equalities into (10) we have
1 .
8Rhijrn = 26 Rpijr + §(thujk + w;Rpijr + wjRnitk + wiBpiji),
- whence, in virtue of (10), follows relation (1). ¢
Proposition 3. If on a manifold M relation (1) holds, then
(atim — amn)Rrijr = 0.
Moreover,
Rhyijrfim) =
(11) = ApmRiijk — AniBmijk + Aim Ruijk — AitBimjk+
+AjmRuitk — AjiRpimk + Akm Rriji — AxiRhijm,

where Apm = Qpim — ARLGm.
Proof. Differentiating covariantly (1) we get
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Ryijrqim) =2(Aim — Ami) Rpije+

(12) + ArmBiijk — AniBmije + Aim Ruijk — AitRhmjk+
+ AjmBritk — AjiBpimk + AkmRhijt — AkiRhijm.

Permuting cyclically (12) in pairs (h,1), (5, k), ({,m), adding the result-
ing equations to (12) and applying Lemma 1 we obtain
2(Bim Rhijk + BhiRjkim + BjkRimni)+
+ BimBiijk — BriRmijk + Bim Ruijx — BitRumjk+
+ BimRritk — BjiRpimk + BimRrijt — BriRpijm+
+ BjiRikim — BjnRikim + BriRjhim — BenRjitm = 0,
where B, = Gym — @min = —Bop.

Suppose that for some (p,q) inequality B,, # 0 holds. Putting
h=j=1=p,i=k=m=qinto (13) we obtain R,,p, = 0. Hence,
putting h =3 =1l =p, i = k = g we find Rpgpm = 0 for an arbitrary m.
Therefore, putting h = j = p, i = k = ¢ we get Rpgim = 0 for arbitrary
I, m. Moreover, for h = j = p and 7 = ¢q we have
(14) 3Bpg Rpkim + Bpm Rigpk — BpiRmgpk + Bym Bpipk — Byt Rpmpk = 0.
Substituting in (14) | = p we find
(15) Rprpm =0
for arbitrary k, m. Then, putting in (14) m = ¢, we get Ry, = 0 for
arbitrary k, [, which, together with (15) and (14) yields Rygim = 0 for
arbitrary k, I, m. Finally, putting in (13) 2 = p and i = ¢ we obtain
Rjtim =0 for all 7, k, I, m. Last of all, (11) results from (12) and the
first part of our proposition. ¢

From Prop. 3 we obtain
Theorem 1. Let (M, g) be a manifold whose curvature tensor does not
vanish on a dense subset of M. If on (M,g) relation (1) holds, then

the vector a; 18 locally a gradient.

(13)

3. Conformally flat manifolds

Let M (dim M > 3) be a conformally flat manifold. Then on M

the following well-known relations hold:
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1
Rpijk = — [gijRuk — gicRnj + gne Rij — gnjRix] —
. n—2
(16) R
RCECE) (9ijghk — gikghj),
1
(17) Rijit — Rirsj = m(gin/k — girRij)-

Theorem 2. Let M (dim M > 3) be a conformally flat manifold whose
curvature tensor satisfies (1). If ai(z) # 0 (z € M), then there ezisis a
neighbourhood of z such that

(18) R;; = Fgij + Hajaj,
F, H being functions, and
Rhen = 2F(angu + argn1) + 4Haparar+

(19)

R
+n—_'_—1(2ghkaz — QikGh — Gh1Gk)-

Proof. From (1), by contraction with g%, we obtain
(20)  Rpgn = 2aiRux + anRux + axRut + ar R gnt + ar R i,

whence

(21) R, = 2a;R + 44,
where A; = a, R";. Moreover, we have
(22) Rijik — Ririj = 3a,R" ;1 + Rijar — Rixa;.

Substituting (22) and (21) into (17) we find
3a,R"ijx + Rijay — Rira;—
(23) 1
——— lgij(Rar + 24x) - gij(Ra; + 24;)] = 0.
On the other hand, transvecting (16) with o, we have

1
arR"ijx = E__2[gijAk — gikAj + Rijar — Rixa;]—
(24)

=5 )
— ap — gina;).
(n— 1)(n — 2) JH% — Jik43
Substituting (24) into (23) we obtain

R 1
(25) Rijax — Riraj = —=(gijar — giraj) — -—7(9ij Ak — gird;)-

Moreover, substituting (25) into (23), we get
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1
(26) arR" ik = n_:"l‘(gijAk — gikA;j),
which, by transvection with a?, results in
(27) ajAk = akA]‘.

Now, at each point where a; does not vanish, we can choose a vector 2
satisfying a,2” = 1. Transvecting (27) with 2/ we find

(28) Ak = akA,zr.
Thus, transvecting (25) with z* and applying (28), we get
(29) Ri]’ = F(g,'j — Z,'aj) -+ Rirzraj,

where A;2" + (n — 1)F = R. Hence, in virtue of the symmetry of R;j,
relation (18) results from (29).

Finally, substituting (18), (26) and (28) into (20) and eliminating
. A,z", we obtain (19).
Theorem 3. Let M (dim M > 3) be a conformally flat and semi-sym-
metric (i.e. Ryijriim) = 0) manifold and its curvature tensor satisfies
(1). Then relation a,R",, = 0 holds on M.
Proof. We can assume that a;(z) # 0. Then, in view of the equality
(26), from Lemma 2 results

R
A {Rhijk - m(gijghk - gikghj] =0.

Suppose that A;(y) # 0 for some y € M. Then, in some neighbourhood
U 3> y, the scalar curvature is constant, whence, in virtue of (21), we
have a;R + 2A; = 0. On the other hand, the relation R;; = %gij holds
on U, therefore A; = %aj. Hence A; must vanish on U, which is a
contradiction. This completes the proof. ¢

Corollary. Under assumptions of Th. 3, if a; # 0, then

R
Ri; = g%t Ha;aj;,
R
Rprn = m(zghkal + gikan + griar) + 4Hapagay.
Theorem 4. Let M (dim M > 3) be a manifold whose Ricci tensor i3
~of the form (18) and satisfies (19). Then we have on M

(30) Rukn — Ruuk — (gnkRi — gniRix) = 0.

1
2(n — 1)
Proof. To prove (30) it is enough to express R;; in terms of R and F.
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By contraction of (18) with g*/ we get R = Fn+ Ha,a" and contraction
of (19) with g"* yields

R, = [4F +4Ha,qa" + 2R]a1
Hence
(31) Ry =[6R—4(n—1)F|a.
Applying (19) and (31), by direct calculations, we check (30). ¢
Theorem 5. Let M be a manifold whose Weyl conformal curvature
tensor vanishes and the Ricci tensor and its covariant derivative are of
the forms (18) and (19). Then the relation (1) holds on M.
Proof. From (16) and (18) it follows

1 R
Ruijr = n_9 [(QF - m) (9ij9nk — ingnj)+

+H(gijanar — gixana; + grraia; — ghjaiak)]-

On the other hand, differentiating covariantly (16) and substituting
(19) and (31), by a straightforward calculation we check that condition
(1) is satisfied on M. ¢
Proposition 4. Let (M, g) be a conformally flat manifold whose curva-
ture tensor satisfies (1). If ai(z) # 0, Rpijr(z) # 0 (z € M), then there
ezists a neighbourhood U 5 z and a function a defined on U, satisfying
ang = ay, such that F = F(a), H = H(a), B = a,a” = B(a), where F,
H are given by (18).
Proof. According to Prop. 3, if Rpijx(z) # 0, then there exists a
neighbourhood U 3 z and a function a defined on U such that a;; = a;.
We shall prove that both the functions F', H defined by (18) as well as
B =a,a" depend on a.

Differentiating covarlantly (18) and substituting to (17), in virtue
of Prop. 3, we get

(32) 9ijFx + Hya;a; + Haypa; — g Fy — Hjaar — Hajjay =

= s : Sy 5V Fe+ B+ 2H )= g (0T, B+ 2H o),
Where Fy = F, Hiy, = Hy;x and Byx = 2a,1a". Contracting (32) with
g* we obtain
n—2
2
whence, multiplying by a; and alternating in (7, k), we find

(33)

1
F, = —§BHk + H.a"ar + Harnsg™ ag,



On some generalisation of recurrent manifolds 199

(34) (n — 2)(a,‘Fk — ak-Fi) = “B(ain — akH,-).
Moreover, transvecting (32) with a’ and applying (33) we have
(35) B(a;Hy — azH;) = —H(ajaqra” — arapqja’).

On the other hand, substituting (18) into the left hand side of ( 19) we
get
Fighr + Hiapar + Hapnar + Hapagn = 2F (angi + argn)+
(36) +4Hapara; + “——nitjfB(zghkal ~ QIGh — Gh1GK),
whence, by contraction with g*,
nfi+ BH;+ 2Hama" = [(2n + 4)F + 6 H Bla,.
Multiplying by a; and alternating in (i,1), in virtue of (35), we obtain
n(a;Fy — aiF;) = B(a; Hi — aiH;).

Comparing the last result with (34) we find
(37) aiﬂ - alF,- = 0.
Hence F' = F(a). :

The last result enables us to prove H = H(a). Multiplying (36)
by a,, and alternating in (I,m), by the use of (37), we get

ahak(Hlam - Hma;)—{—
(38) +Har(annam — apmar) + Hap(arnam — apmar) =
R

n—1
Moreover, multiplying (36) by a, and alternating in (h,m), in virtue
of F; = F'a;, results in :

(F' 2R

n—1

= (ZF - )(ahamgzk — QRAIGmE + Ak Am Ik — QkGIGmE )-

)al(amghk —~ angmk) + Har(apnam — amuap) =

G N—

which, by symmetrisation in (k,!), gives

R
(39)  H(awnam — amnay) = (2F - F'+ ;L'___"I)(ghlam — gmiap)-
Applying (39) to (38) we obtain
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apar(Hiam — Hpap) =

(40) =(F’— 2R

1>(ahamglk — aRA1gmk + AkAmGih — QkGIgmE),

whence, multiplying by a, and alternating in (k,p), we get

2R
(41) (F, - n— )[am(glkap - glpak) - a’l(gmkap - grn.pak)] =0

1
Suppose that B # 0. Transvecting (41) with a? we find
2R
4 F - -
(42) — =0

On the other hand, if B = 0, then contraction of (41) with g'* yields
(42) again. Consequently, in virtue of (40), Hiam — Hmai = 0. Hence
H = H(a).

Finally, since R = nF + HB, F = F(a), H = H(a) in view of
(42), we have B = B(a). {

4. The local structure theorem

We are now in a position to prove our main result.
‘'Theorem 6. (i) Let (M, g) (dim M > 3) be a conformally flat manifold
whose curvature tensor satisfies (1). If ai(z) # 0, Rpijr(z) # 0 (z €
€ M), then in some neighbourhood of x there exists a coordinate system
g1, ... ,z" such that the metric of M takes the form either (4) where p
i3 a function of x1 only such that

(43) p'(z)#0, ple)p"(z)—p'(z)p"(z) #0,

or (3) where p 18 o function of z' only and
(44) P #-E or p'(z)#0,
(45) pp' — (P #E or pp'—pp"#0 at =,

(46)  p'lpp'p" +3(0')’p" — 4p(p")*] = —E(3p'p" + pp"),
with that E = [(n — 1)(n — 2)] 1R, R being the scalar curvature in the
metric ds?. '

(ii) Let U be an open subset of R (n > 3), endowed with the
metric g given by (4) where p is a function of z' only such that (43)
is satisfied on U. Then (U,g) is recurrent but non-locally symmetric
conformally flat manifold.

(iii) Let U be an open subset of R™ (n > 3), endowed with the
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metric g given by (3) where p is a function of z' only such that (44)-
(46) hold on U. Then (U, g) is non-recurrent conformally flat manifold
satisfying (1).

Proof. In virtue of Th. 2, Prop. 4 and Lemmas 3 and 4, the local form
of the metric must be either (3) or (4). Straightforward computations
show us that in the metric (4) the only components of the Christoffel
symbols, the curvature tensor and its covariant derivative which may
not vanish are ‘

/
I p
Toy =T, T2y=—pp'ha, Tf= ;55,

Riap1 = PP"hab, Riapin = (pp"' - P’p")hab,
where a,b,c = 3,... ,n and the dash denotes objects in the metric ds3.
Since ai(z) # 0 and Rpiji(z) # 0, it follows that (43) hold at z.

On the other hand, in the metric (3) the only components of the
Christoffel symbols and the curvature tensor which may not vanish are

!
. TS =T, TY=—pp'fu, T5 = 26,
(47) b b »=—pp far, Ty ol
Robed = p*(E + (9')*) fabeds  Riavt = pp" fas,
where a,b,c... =2,... ,n, E =[(n —1)(n — 2)] 'R, the dash denotes
objects in the metric ds? and fapca = focfad — foafac. From (47) the
inequalities (44) result.

Computing the components of the covariant derivative of the cur- .
vature tensor in the metric (3) we find

(48) Rapean = 2pp' (—E + pp" — (0")?) fabed,
(49) Rabcdle = 07 .

(50) Rlbcdll = 07

(51) Rlbcdle = ppl(_E + PP" - (p,)2)febcd7
(52) Rivernn = (pp"" — 9'p") foe,

(53) » Rlbclle = (.

Since the relation (1) holds on M, we also have

(54) Rabean = 2a1 Raped,

(55) Rabedre = 26 Rabed + aaRebed + abRaecd + acRaped + aaRapce,
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(56) Ribean = acRip1a + aaRiper,

(57) Ripeare = a1 Rebed,

(58) Ripain = 4a; Riper,

(59) Riperre = 2aeRiper + apRieer + acRiger.

Now, from (48) and (54) we have p'(—E+pp" — (p')?) = a1p(E + (p')?)
and from (52) and (58) we get pp"' —p'p"” = 4a;pp", whence (46) results.

Finally, comparing (49) with (55) and (53) with (59) and taking
into account (44), we infer that a.(z) = 0. Therefore a;(z) # 0 must
hold. Since p’ could not vanish on any open set containing z, we obtain
(45). This completes the proof of (i).

The proof of (ii) is obvious. To prove (iii) one has to check that
under conditions (44)—(46) the components (47)—(53) satisfied (54)—(59)
whereas (2) is not satisfied. v '

It is well-known that any recurrent manifold is always semi-sym-

metric. We shall prove that in the case of the manifolds under consid-
eration this property need not hold.
Theorem 7. (i) Let (M,g) (dimM > 3) be a conformally flat non-
recurrent and semi-symmetric manifold whose curvature tensor satisfies
(1). If ai(z) # 0, Rpijx(z) # 0 (z € M), then in some neighbourhood
of x there ezists a coordinate system z',... 2™ such that the metric ¢
takes the form (3) where p=Cz' + D, C # 0 and D being constants.

(ii) Let U be an open subset of R™ (n > 3), endowed with the met-
ric g of the form (3) where p = Cz' + D, C # 0 and D being constants,
p # 0 everywhere on U. Then (U,g) is a conformally flat non-recurrent
and semi-symmetric manifold whose curvature tensor satisfies (1).
Proof. On the account of Th. 6, in some neighbourhood of z there exists
a coordinate system z!,...,z" such that the metric of the manifold
takes the form (3). In the metric (3) the only components of Rhki[im)
which may not vanish are Ryg15 = (n — 2)p™'p"(E + (p')? — pp"') fas.
Hence we find that the only components of Rpijkiim) not identically
equal to zero are Rycgai1s) = pp"(E + (p')? — pp") focda- However, E +
+ (p")? — pp" = 0 contradicts to (45). This completes the proof of (i)-
The proof of (ii) is obvious. ¢

From Th. 7 we get ‘

Proposition 5. There ezist semi-symmetric conformally flat manifolds
satisfying (1) which are not recurrent.
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Proposition 6. There exist conformally flat manifolds satisfying (1)
which are neither semi-symmetric nor recurrent.

Proof. Let U be an open subset of R® (n > 3) determined by the
inequalities either 2! > BZ — C or 2! < —BZ — C, B and C being
constants, B > 0, endowed with the metric of the form (3), where ds?
is a metric of a flat space. If p is a function of z! only such that p =
= Aexp [[y(z!)dz!], A = constant, a > 0, where y = y(z!) is given by
the equation i——I—B arctg(By) = z' +C, then (U, g) is a conformally flat
manifold satisfying (1) which is neither recurrent nor semi-symmetric.
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