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Abstract: The main result of this paper is a commutativity theorem for
associative rings satisfying the polynomial identity z'[z™,yly* = +[x,y™]
(see Th. 1).

1. Introduction

Throughout the present paper R will represent an associative ring
(with or without unity 1), Z(R) the center of R, N(R) the set of all
nilpotent elements of R, N'(R) the set of all zero divisors of R, and
C(R) the commutator ideal of R. A ring R is called left (resp. right)
s-unital if z € Rz (resp. z € zR) for every z in R. Further, R is called
s-unital if R is both left and right s-unital, that is z € z RN Rz, for every
z in R. If R is s-unital (resp. left or right s-unital), then for any finite
subset F' of R, there exists an element e in R such that ex = ze =«
(resp. ez = z or ze = z), for every z in F.

For any z,y in R, we write as usual [z,y] = zy —yz. For a positive
integer n, we consider the following property of a ring R
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Q(n): For all z,y in R, n[z,y] = 0 implies [z,y] = 0.
Obviously, every n-torsion free ring R has the property Q(n) and every
ring R has the property (1). If a ring R has the property Q(n), then

R has the property Q(m) for any factor m of n.
In a recent paper [2] we considered (one-sided) s-unital rings R

satisfying
(P): There exists non-negative integers m,n,s and t, m > 0 or n > 0,
and s # t for m = n = 1 such that z'[z",y] = +2°[z,y™], for all
z,y in R, or z*[z",y] = +[z,y™]z®, for all z,y in R.
Now, our objective is to investigate the commutativity of a ring
R which satisfies the polynomial identity
(1) z'[z", yly® = £[z,y™],
for some given non-negative integers m,n,s and ¢. Since we, as in the
case that R has a unity 1, under z'y, resp. zy®, for t = 0, resp. s = 0,
understand y, resp. z, the above identity take sence also when some
of the exponents becomes zero. For m =n =0, or m = n = 1 and
s =1t =0, any ring R satisfies the identity (1), and thus, in this case,
she cannot contribute to the commutativity of a ring. Hence, we can
exclude the above mentioned values of non-negative integers m, n, s and
t. For the remained values we will prove here three theorems. The main

result of the present paper is the following

Theorem 1. Let m,n,s and t be fized non-negative integers such that

m>0o0n>0,ands>00rt >0 m=1,n=1 IfRisa

ring which satisfies the polynomial identity (1), then R is commutative

provided that one of the following additional conditions is fulfilled:

(a) m =0, and R is an s-unital (resp. a left s-unital for s = 0, or a
right s-unital for t = 0) ring with property Q(n);

(b) n = 0, and R is a left or right s-unital ring with the property

(c)m=1,n>l,orm>1,n=1and s=1¢t=0;

(d) m > 1, n > 1, and R is a left or right s-unital ring with the
property Q(m);

() m>1,n=1,s+t>0, and R is a left or right s-unital ring (with
the property Q(m F 1) fort =0). '

2. Preparation for the proof

In the preparation for the proof of the above theorem, we start by
stating without proof the following well-known lemmas.
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Lemma 1. ([4, Lemma]). Let R be a ring with 1, and let f be a
polynomial function of two variables such that f(z + 1,y) = f(z,y) for
all z,y € R. If there exists a positive integer n such that z™f(z,y) =0
for all z,y € R, then f(z,y) =0 for all z,y € R.

Lemma 2. ([9, Lemma 3]). Let z and y be elements in a ring R. If
[z,[z,y]] = 0, then [zF,y] = kz*~1[z,y] for all integers k > 1. _
Lemma 3. ([14, Lemma}). Let R be a left (resp. Tight) s-unital ring.
If for each pair of elements z and y in R, there ezists a positive intege'r

k(:c y) and an element e = e(:v,y) of R such that z¥e = «* and
y*e = y* (resp. ez* = z* and eyf = =y*), then R is an s- unztal Ting.

An especially important role in proving all results of this paper
play the following two results. The first is due to T. P. Kezlan [7, Th.]
and H. E. Bell [3, Th. 1] (also see [12, Prop. 2]), and the second was
proved by W. Streb {13, Hauptsatz 3].

Theorem KB. Let f be a polynomial in non- commutzn_q indeterma-
nates i, ...,z with (relatively prime) integral coeﬂ’iczents Then the
followmg are equz'valent

1) For any ring R satisfying the polynomial identity f=0, C(R) is
a nil ideal;

2) every semi-prime ring R satzsfyzng f =0 i3 commutative;

3) for every prime p, (GF(p)), fails to satisfy f = 0. ’

Theorem S. Let R satisfy a polynomial identity of the form [z,y] =

= p(z,y), where p(X,Y) € I{X,Y), the ring of polynomials in two non- -
commuting indeterminates over the ring Z of mteger.s has the following
properties:

(1) p(X,Y) is the kernel of the natuml homomorphism from Z(X Y)
to Z[X,Y], the ring of polynomial in two commutmg indetermi-
nates;

(ii) each monomml of p(X,Y) has total degree at least 3;

(iii) each monomial of p(X,Y) has X -degree at least 2, or each mono-

mial of p(X,Y) has Y-degree at least 2.

Then R 13 commutative.

Now, we need the following Lemma which enables us to reduce
the proof of Th. 1 to ring R with unity 1 (if R is left or right s-unital).
Lemma 4. Let m,n,s and t be fized non-negative integers such that
m>0o0rn>0,ands>00rt>0ifm=n=1. If a ring R satisfies
(1), then R 1s s-unital in all of the following cases:

(a') m =0, and R 1s a left s-unital ring for s = 0, or a right s-unital
ring for t = 0; ’
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(b') n =0, and R is a left or right s-unitel ring;
(Ym>1,n>1(orn=1,s+t>0)and R is a left or right s-unital

Ting.

Proof. Let z and y be arbitrary elements in R. If R is a left (resp.
right )s-unital ring, then we can choose an element e (resp. f) in R such
that ez = z and ey = y (resp. zf = « and yf = y).

Case (a'): For m = 0 the identity (1) reduces to

(2) zt[z",yly* =0 forall z,y€R.
If s = 0 and R is left s-unital, then by (2), for z = e, we get y = ye™,
and thus, R is s-unital. For t = 0, and R a right s-unital ring, from (3)
we derive 2" = fz™ and y™ = fy", which by Lemma 3, means that R
is also left s-unital. :

Case (b'): For n = 0, the identity (1) becomes
(3) [z,y™] =0 forall z,y€R.

Hence, by (3), z = ze™ (resp. z = f™z) if R is left (resp. right) s-unital
and thus, R is s-unital.

Case (¢'): If R is left s-unital, then by (1), z = ze™ — z" ez +
4zttt € zR, sincem >1andn > 1 (orn =1and s+t > 0). Hence,
R is s-unital.

Similarly, one can see that R is s-unital if R is right s-unital. {

Further, we prove that, for the ring in Th. 1, C(R) € N(R). In
fact, we prove the following lemma:

Lemma 5. Let m,n,s and t be fired non-negative integers such that
m>0o0rn>0,and s >00rt>0if m=n=1 IfR satisfies the
polynomial identity (1), then the commutator ideal C(R) of R is a nil
ideal, 1.e. C(R) C N(R).

Proof. In view of Th. KB, it suffices to prove that, for every prime p,
there exist z,y in the full ring (GF(p)); of 2 x 2 matrices over Galois
field GF(p) which fail to satisfy the identity (1). Actually, we can take

1 0 0 1\
:c—<0 0), y—(l 0), for m=0,

0 1 1 0
:1:-(0 0), y-(o 0), for other cases. ¢

For s =t=0,and m > 1, n = 1, the ring R in Th. 1 is commuta-
tive by Herstein’s criterion [5, Th. 18] and also by Th. S, and for m =1

and
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and n > 1, by Th. S, R is commutative for arbitrary non-negative inte-
gers s and ¢ (such that s > 0 or ¢ > 0 if n = 1). In all remaining cases,
the ring R in Th. 1 is s-unital by Lemma 4. Hence, for these cases, in
view of [6, Prop. 1], we can and will assume that R has unity 1. Under
this assumption, as the next step in the proof of Th. 1, we have
Lemma 6. For the ring R in Th. 1, all nilpotent elements are central,
i.e. N(R) C Z(R).

Proof. Take an arbitrary element a in N(R). Then there exists a
positive integer p such that

4 a* € Z(R) for all integers & > p, p minimal.
g

If p=1, then a € Z(R). Suppose that p > 1, and set b = a?~1.
By (4), we have

%) ¥ € Z(R), and ¥[z,b] =[z,b]b¥ =0 for all
z € R and all integers k> 1.

1) Let m = 0 and suppose that R has the property Q(n). Set
1+ b for z in (2). In view of (5) and the invertibility of (1 + b)t, we
get n[b,yly® = 0 for all y € R, hence, by Lemma 1, n[b,y] = 0 for all
y € R. In view of the property Q(n), this yields [b,y] =0forally € R,
i.e. a?~! € Z(R), which contradicts to the minimality of p in (4).

2) Let now n = 0 and suppose that R has the property Q(m).
Set 1+ b for y in (3). Then, in view of (5), m[z,b] = 0, for all z € R,
hence by Q(m), [z,b] = 0 for all z € R, ie. a?~! € Z(R), which is a
contradiction.

3) Let m > 1, n > 1 and suppose that R has the property Q(n).
Then by (5), for z = b, the identity (1) gives [b,y™] = +b[b", yly* = 0

for all y € R. Therefore, setting 1+ b for z in (1), we get (1 + b){[(1 +
4+ b)™Myly* =0for all y € R. In view of (5) and the invertibility of
(1+0), this implies n[b, yly* = 0 for all y € R, hence, by Lemma 1 and
the property Q(n), [b,y] =0forally € R, i.e. a? ! € Z(R), and this is
a contradiction. ‘

4) Let, finally, m > 1,n = 1and s+t > 0. If t > 0, then setting 14
+bfor z in (1), we get, in account of (5), [b, y]y® = —tb[b, yly®+[6,y™] =
= —tb[b, yly* + b'[b, yly°, i.e. blb, yly® = —tb2[b, yly® + b*H1[b, yly® = 0.
Hence, [b,yly® = —tb[b,yly® + b'[b,y]y® = 0 for all y € R. According
to Lemma 1, this yields [b,y] = 0 for all y € R, i.e. a?™! € Z(R). If
t =0, then from (1), for y = 1+ b, we get [z,b](1 + sb) = £m]z, b, i.e.
(mF1)[z,b] = +s[z, b]b, or, by (5), (mF1)[z,b]b = 0, i.e. (mF1)[zb, b] =
= 0. In view of Q(m F 1), this yields [z,b]6 = 0, i.e. (m F1)[z,b] =0
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for all z € R, and thus, [z,b] = 0 for all z € R, i.e. ® ' € Z(R), a
contradiction. ¢
By Lemmas 5 and 6, for the ring R in Th. 1, we have

(6) C(R)C N(R) € 4(R),
hence, especially,
(7 [z,[z,y]] =0 forall z,y€R.

In view of (7) and Lemma 2, the identity (1) can be rewritten in the
form
(1) ne™ Tz, yly® = tmlz,yly™ " forall z,y€R.

By an argument similar to Lemma 1, it is easily to see, that for a
ring R with unity 1 satisfying the identity (1), and any z,y € R,
(8) “m|z,y] =0 ifandonlyif nf[z,y]=0.
Especially, for such a ring R, the properties Q(m) and Q(n) are equiv-
alent.

3. Proof of main result and some comments and
supplements

Proof of Th. 1. Case (a): Let m = 0 and suppose that R has the
property Q(n). Then (1'), in view of Lemma 1 and the property Q(n),
implies
[z,y] =0 forall z,y€ R.
Case (b): If n = 0, and R has the property Q(m), then (1h,
Lemma 1 and the property Q(m) yield
[z,y]=0 forall z,y€R.
Case (c): The commutativity of R in this case, was established
earlier.
Case (d): Let m > 1, n > 1 and R be a ring with unity having
the property Q(m). Since R also satisfies (1'), R has the property Q(n)
too. Now, set 1+ z for z in (1), and combine the identity (1) with
obtained one. Then we get (1 + z)'[(1 + z)™,yly® = «f[z",y]y® for all
z,y € R, hence, by Lemma 1, (1 + z)*[(1 + z)",y] = z'[z",y] for all
z,y € R. The last identity implies

9) als,yl = f(z,y) forall z,y€R,

where f(X,Y) is a polynomial satisfying conditions of Th. S. But, the
ring R satisfies the identity
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(10) klz,y] =0 forall z,y€ R, and k= (2"t —2)m.

Namely, setting in (1'), 2z for z and combining the identity (1') with
obtained one, we get k[z,yly™ ' =0 for all z,y € R, and k = (2"t —
—2)m, or, by Lemma 1, the identity (10). Now, by (10), there exists a
minimal positive integer p such that

(11) plz,y]=0 forall z,y € R.

If p =1, then R is commutative. Otherwise, by Q(n), n is relatively
prime to p, hence, there exist integers n' and p' such that 1 = nn' 4 pp/,
and thus, in view of (9) and (11),

[2,5] = n'f(z,y) forall o,y€ R

Hence, R is commutative by Th. S.

Case (e): Let m >1,n=1, s+t >0, and let R be a ring with
unity 1.

For t > 0, we can derive (9) as in the case (d). Since now n =1,
this means that R is commutative (see Th. S).

If t = 0, then R has the property Q(m F 1). In this case, the
identity (1'), for s = m — 1, in view of Lemma 1 and the property
Qm ¥ 1), gives

[z,y) =0 forall z,y€ R.
For s # m — 1, setting 1 + y for y in (1'), we get
(12) (m ¥ 1)[z,y] = g(z,y) forall z,y€ R,
where g(z,y) is a polynomial satysfying the conditions of Th. S. Since
now, s + 1 # m, from (1') we can easily derive
(13) klz,y] =0 forall z,y€ R, and k=[2°T'—2™|n.
Thus, there exists again a minimal positive integer p for which (11)
is satisfied. But then, from (12) and (13) we get, similarly as in the
foregoing case,

[z,y] = m'g(z,y) forall z,y€R,

and this, in view of Th. S, yields the commutativity of R. ¢
The following results are immediate consequences of Th. 1.
Corollary 1 ([8, Th.]). Let m,t be fized non-negative integers. Suppose
that R satisfies the polynomial identity z*[z,y] = [z,y™]. Then
a) if R is left s-unital, then R is commutative ezcept for (m,t) =

= (1,0); |
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b) if R is right s-unital, then R is commutative ezcept for m = 1,
t=0; and also m=10,1t > 0.
Corollary 2 ([11,Th. 2.]). Let m>n>1 be fized integers with mn>1,
and let R be an s-unital ring. Suppose that every commutator [z,y]
in R is m!-torsion free. If further, R satisfies the polynomial identity
[z",y] = [z,y™], then R is commutative.
Corollary 3 ([1, Lemma 2(2)]). Let R be a ring with unity and n > 1
a fized positive integer. If R is n-torsion free and satisfies the identity
[z™,y] = [z,y"], then R is commutative.
Finally, as complements to Th. 1, we prove the following two the-
orems, which are similar to Th. 3, resp. Th. 4 in [2].
Theorem 2. Let R be a left or right s-unital ring which satisfies (1)
and has the property Q(2). Suppose that one of the integers m —s — 1
and n+t—1 18 odd. If, moreover, R has one of the properties Q(m),
Q(n), or especially, if (m,n) = 27 for some non-negative integer r, then
R i3 commautative.
Proof. If m—s—1, resp. n-+t~—1 is an odd integer, then from (1), for —
instead of y, resp. for —z instead of z, one gets zt[z", y]y® = +[z, y ]
This, combined with (1), yields, in view of @Q(2),

(14) 'z yly* =0, [z,y™] =0 forall z,y€ R.

In view of the second part of (14), we see as in the proof of case (b) in
Th. 1, that R is s-unital, R has the property C(R) C N(R) and that

(15) mlz,bj=0 forall z€R,

where b is defined as in the proof of Lemma 6. Now, by Lemma 1, from
‘the first part of (14), one gets

(16) zi[z",y] =0 forall z,y € R.

Setting 1+ b for z in (16), we arrive, in view of (5) and the invertibility
of (14 b)¢, at the identity

(17) n[b,y]=0 forall ye€ R.

If R has one of the properties Q(m) and Q(n), or, especially, if (m,n) =
= 2" for some non-negative integer r, then from (15) and (17) one can
easily derive

[b,y] =0 forall ye R, ie o’ '€R.

This contradiction shows that N(R) C Z(R), and thus R satisfies (6),
hence also (7). Therefore, by Lemma 2, the identities in (14) can be
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rewritten in the form

nmn+tf1[z’ y]ys = O, m[x, y]ym—l = 0 fOI‘ all z,y € R,

heﬁce, in x}ieW of Lemma 1,
(18) nfz,y] =0, miz,y]=0 for all T,y € R.

From (18), in view of Q(2), follows the commutativity of R, since R
has one of the properties Q(m) and Q(n), or especially, (m,n) =27 for
some non-negative integer r. ¢ o

Theorem 3. Let R be a left or right s-unital ring which satisfies (1)
Suppose that s # m, resp. n+t > 1, and R has the property Q(k), where
k=[2m~2°|, resp. k = 2"*'—2. Then R is commutative, provided that
R has one of the properties Q(m) and Q(n), or, especially, (m,n) =
= 27 .r' for some mon-negative integer r and some odd divisor r' of
Proof. If s # m, resp. n +¢ > 1, and R has the property Q(k) for
k= [2™ —2°|, resp. k = 2"t* — 2 then from (1), for 2y instead of y,
resp. for 2z instead of z, in view of Q(k), one derives (14). Since k
is even, and R has the property Q(k), then R has also the property
Q(27r") for every non-negative integer r and every odd divisor r' of k.
Now, the proof is similar to the proof of Th. 2, and can be omitted. O
Remark 1. If R is a right (resp. left) s-unital ring which satisfies the
wdentity

, Y’z ylzt = [z, y™],
then the opposite ring R' of R is left (resp. right) s-unitel and satisfies
the identity (1). Thus all previous results still true if one replaces “left

(resp. right) s-unital” by “right (resp. left) s-unital” and the identity
(1) by the identity (19).
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