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Abstract: This paper contains a thorough investigation of the compositions
of relations defined by Bandler and Kohout. It is shown that these composi-
tions bear some shortcomings and improved definitions are suggested. Similar
ideas are used to define new images of a set under a relation. Possible rela-
tionships among these images and among the compositions are investigated.
An extensive overview of the properties, such as monotonicity and interac-
tion with union and intersection, of the images and the compositions is given.

Finally, the associativity properties of the compositions are examined.

1. Introduction

In 1980 W. Bandler and L. Kohout [1] introduced several new
compositions of relations, called products in their terminology, based
on the notions of aftersets and foresets of relations. They immediately
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extended these compositions to fuzzy relations using fuzzy implication
operators [2]. Bandler and Kohout claim that fuzzy relational composi-
tions constitute a tool for the analysis and synthesis of complex natural
and artificial systems. The List of application areas is appealing, inclu-
ding medical diagnosis (3] and information retrieval systems [4,5]. Their
definitions have been generally accepted and have even become common
property in fuzzy set theory.

An attempt to apply Bandler and Kohout’s ideas on the con-
cept of direct image of a set under a relation brought to light that the
definitions of their compositions bear some shortcomings [6]. These be-
come even more important when one considers the fuzzy counterparts
of these definitions. The purpose of this paper is to provide more acciu-
rate versions of these compositions of relations and to, give an extensive

overview of their relevant properties.

B

2. Preliminary definitions A

A relation R from a universe X to a universe ¥ is a subset of

XA xY,ie. RC X X¥. The formula (z,y) € R is abbreviated as zRy,
and one says that z is in relation R with Y. ,; .
Definition 2.1. The afterset zR of € X and the foreset Ry of
Y €Y are defined as

zR = {y | =Ry}

Ry = {z | zRy}.
Definition 2.2. The domain dom(R) and the range rng(R) of R are
defined as )

!

dom(R) = {z | zR # 0}
mg(R) = {y | Ry # 0}.

Definition 2.3. The converse relation RT of R is the relation from
Y to X defined by \
yRTz & zRy. ‘ '
The complement co R of R is the relation from X to Y defintd by
' z(co R)y < —(zRy). .

Notice that dom(RT) = mg(R), rng(RT) = dom(R) and co(RT) =
= (coR)T.
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Consider an arbitrary family (R;)ier of relations from X to Y
indexed by I.
Definition 2.4. The union U R; of the family (R;)ier is the relation
from X to Y defined by iel

z( U Ri)y & (Fi € I)(zRiy).
iel
The intersection ﬂ R; of the family (R;)ier is the relation from X to
Y defined by iel

a:( N Ri)y & (Vi € I)(zRiy).
i€l
All of these operations can be expressed in terms of after- and foresets
in the following way [9].
Properties 2.1.

1. zR=RTz
Ry=yRT
2. z(co R) = co(zR)

(co R}y = co(Ry)

( U R;)y= U Ry
iel iel

4 m(ﬂ Ri) = ﬂ zR;
i€l iel

(m Ri)y = ﬂ Ry
iel iel

3. Images of a set under a relation

3.1. Definition

Consider a relation R from X to ¥ and a subset A of X. The classical
definition of the direct image of the set A under the relation R is given
as follows

R(4) ={y | (3= € A)(zRy)}-

The direct image R(4) is the set of those elements of V" that are in
relation RT with at least one element of A. The intention of this sub-
section is to refine the direct image R(A) in order to distinguish those
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elements of ¥ that are in relation R” with all elements of A and those
elements of ¥ that are in relation RT with elements of A only. This
refinement is achieved in the following definition.

Definition 3.1. (Images of a set under a relation)

R(A) = {y | AN Ry # 0}
R(A)={y |0 C AC Ry}
R(A)={y |0 CRyC A}
R°(A)={y |0 C A= Ry}.

This definition provides four different images of a set under a relation. It
is obvious that the first definition coincides with the classical definition
of the direct image of a set under a relation. The second image R(A)
is called the. subdirect image of A under R, while the third image R”(A)
is called the superdirect image of A under R. The fourt}é image R°(A)
is called the square image of A under R. 1

For a non-empty set A, the subdirect image R%(A)'¢an be written
as

R*(A) = {y | (Vs € A)(=Ry)}.

This explains why the direct and subdirect image: are called ezistential
and universal compositions by Izumi, Tanaka afd Asai [8]. They are
also called upper and lower images by Dubois and Prade [7].

Remark 3.1.

e The non-emptiness condition § C A in!the definition of RY(A)
seems superfluous at first sight and could be evaded by restricting
the definition to a non-empty set A. Without the condition § C A
it would follow that R*(0) = Y, which is unacceptable. Neither
Izumi, Tanaka and Asai nor Dubois and Prade have observed the
necessity of this non-emptiness condition.

e The non-emptiness condition § C Ry in the definition of R”(4)
has stronger consequences. Without the condition § C Ry it would
follow that co(rng(R?)) € R*(A), which is unacceptable again. The
condition § C Ry ensures that R”(A) contains those elements of ¥
that are in relation R7 with elements of A only and that actually
do so.

e The non-emptiness conditions imply that all images are contained
in rog(R) and that the images of the empty set under a relation
all yield the empty set.

An equivalent way of defining the new images is the following
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RY(A) =R(A)n{y | A C Ry}
R*(A) =R(4)n{y | Ry C A}
R°(A) =R(A)n{y| A= Ry}.

These definitions interpret the non-emptiness conditions in a different
way. Adopting these alternative definitions unnecessarily complicates
the proofs of the properties of the new images. The condition y € R(A)
not only implies the non-emptiness of A and Ry but also a certain
overlap. This overlap is afterwards tested in a stricter way by the
conditions of inclusion or equality in the second components of the
above intersections.
Example 3.1. The images of a set under a relation can be illustrated
on an example from medical diagnosis. Consider a set of patients X
and a set of symptoms Y. Let R be the relation from X to Y defined
by
zRy & patient x shows symptom y.
Let A be the non-empty set of female patients in the population X,
then the iwiages of A under R are given by
¢ R(A) is the set of symptoms shown by at least one female patient,
o RI(A) is the set of symptoms shown by all female patients, ‘
o R"(A) is the set of symptoms shown by at least one female patient
and not by any male patient,
e R°(A) is the set of symptoms shown by all female patients and not
by any male patient.
A close examination of the relationships between the images and
the properties of the images is discussed in the following subsections.
A few of these relationships and properties can also be found in [7,8].

3.2. Relationships between the images

3.2.1. Containment. A first series of properties concerns the refining
nature of the images.
Properties 3.1. (Containment)

R°(A) =R(4) N R°(A4)
R°(A) CR(4) C R(4)
R°(A) CR°(4) C R(4).

3.2.2. Relationships. This paragraph investigates among other
things how the determination of a subdirect or a superdirect image
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can be converted into the determination of a classical direct image.
These properties not merely have an aesthetical character but also a
functional one. As will become clear, they assist in discovering and
proving new properties. The new Images can be expressed in terms of
the direct image in the following way.

Properties 3.2.

R%(4) = co((co R)(A)) if A# D
R*(A) = co(R(co A)) N rng(R)
R°(A4) = co((co R)(A)) N co(R(co A)) of AF 0.
Proof. As an example, the third equality is proven.
Y € co((co R)(A)) N co(R(co A)) . .
- - < (AN(coR)y #B) A ﬂ('coAj‘» Ry # 0)
- & ANco(Ry) =0 A coAﬂRy—,:‘@
&0CACRy A RyCa4 X
S 0CcA=Ry
Sy €eER(A). ¢
The following relationships express the direct il;/i'age in terms of the

subdirect or the superdirect image.
Properties 3.3.

R(4) = cof(co R)*(4)) A0
R(A) = co(R%(co A)) Nrng(R).
Proof. The second equality can be proven as follows.
Yy € co(R*(co 4)) N rng(R) .
@ (CRyCcod) A Ry#£10
& (~(0 C Ry) V ~(Ry Ccod)) A Ry #£10
& (Ry=0V ~(Ry CcoAd)) A Ry#10

& =(Ry C co 4) \
< (Jz € Ry)(z € A) \
S ANRy#0

SyeR4).
Other interesting relationships are these existing between the subdirect
and the superdirect image.
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Properties 3.4.
R(A) = (co R)”(co A) U co(rng(co R)) ifA#£0D
R*(A) = (co R)*(co A) Nrng(R) ifco A #£0.

Proof. As an example, the first equality is proven.
y € (co R)*(co A) U co(rng(co R))

&0 C(coR)yCcoA V =((coR)y # )
& (0 C co(Ry) A co(Ry) CcoA) V co(Ry) =0
SRyCX ANBCACRy) V Ry=X
S PCACRy
&y € RY(A). O

To conclude this paragraph, the following property for the square image

is mentioned.
Property 3.5.

(coR)°(co A) = R°(A) if A# 0 and co A # 0.
Proof.
y € (co R)°(co A)
Sb0CcccwA=(coR)ye b CcoAd A coA = co(Ry)
ScA#EDNA=Rys 0 CACRy & ye R(A). O
3.2.3. Expressions in terms of aftersets. Using properties 3.2
expressing the new images in terms of the direct image, definitions 3.1

can be written in the following elegant way.
Properties 3.6. (Expressions in terms of aftersets)

R(4)= ] =R
TE€A

RY(A)= () 2R ifA#D
z€EA

R°(4) = ﬂ co(zR) Nrng(R)
z€co A

RO(A) = ( N a:R) n( N co(a:R)) ifA£D.

z€EA TEc0 A

Proof. As an example, the second equality is proven.
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R%(A) = co((co R)(A)) =co ( U z(co R)) =co ( U co(rR))
zE€EA TEA

= ﬂ co(co(zR)) = ﬂ TR, §

€A TEA

3.3. Monotonicity

In this subsection the relationship is investigated between the images
of a subset of a set and the images of this latter set under a given
relation. The same investigation is carried out for the images of a given
set under a subrelation of a relation and under this latter relation. This
investigation leads to the following results. :

Properties 3.7, (Monotonicity)

Az = R(Al)g R(Jéz)

Ay = RQ(AQ) C Rq(’:fh)

Ay = RD(Al) C RDCAQ)

R2 = Rl(A) QRQ(A)
1< Ry =R <1(!1) ngq(A)

(rng(Rl) = rng(Rz) A Rl QRQ) =$R2>(A) Q Rl l>(..A) -

7
Proof. Only the proof of the last property is mentioned.

yERZD(A)(i)0CR2y§A=>@CRlyQAJ@yERl"(A). 0

e
NININININ

Remark 3.2. From the proof of the last property it actually follows
that the condition rng(Ry) C rng(R;) has to be, added. Since the
condition R; C R, already implies that mng(R1) C rng(R,) it is obvious
that immediately the condition rng(R;) = rng(R;) can be used.

3.4. Interaction with union and intersection

Consider a relation R from X to ¥ and an arbitrary non-empty
family (Ai)ier of sets in X.
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Properties 3.8. (Interaction with union)

R( U A,-) = | R(4:)

i€l i€l
R“(U A,-) =(RY4:) i (Vi€ I)(Ai#0)
icl i€l
B (J4) 2R,
e iel
Proofs.
LoyerR(Ja) e (Ja)nRy#0e JAinRy) £0 i
iel el ief :
& (JieI)AinRy #0) & ye | JR(A)
icl
2. y¢ R“(Uxﬂli) s 0hc (U.4i) C Ry & (VieI)(0 C A; C Ry)
i€l el
SyE ﬂ RY(4;)
el

3. ye|JR(A)e@Gie0CcRyCA)=0cCRyC| A
el <:>y eRD(UA1> B 0 iel
i€l
Without the condition (Vi € I)(A; # 0) one can deduce the following
interaction of the subdirect image with union.

Property 3.9.
ME ) < B (U 4) U Re(40).
el i€l i€l
Proof.
ye[|RY(A:) & (VieN®CACRy)=0c| 4 SRy
e wyeR(|J4) = (3 e O CRy) 3
€] |

syel| JRU(4). ¢

iel
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Properties 3.10. (Interaction with intersection)

R(ﬂ Ai> () R(4:)

ie] el
B () 2 JRYA)  if ()i £0
i€l el el
R"(ﬂAi) =N R 4.
i€l icl )

The same investigation is carried out for the relationship between the
images of a given set under the union and the intersection of an arbitrary
family of relations and the union and the intersection of the images of
that given set under each of these relations. o

Consider &n arbitrary non-empty family (R;)je; of.relations from
X toY and aset 4 in X. \
Properties 3.11. (Interaction with union)

(UR)@ ={Jra) .

o I

iel el A
(Ur) @2z
iel el ]
Nro@ e (UR) @ el w.
i€l I el

Properties 3.12. (Interaction with intersection)

(N &) < N aia)

i€l icl
(N7) @=Nrw
el el
(N&)2UR @ i (wer)((ry20).
iel iel el

4. Compositions of relations

4.1. Introduction

As already mentioned in the introduction, this paper has been inspired
by the results of Bandler and Kohout [1] concerning compositions of
relations.
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Consider a relation R from X to Y and a relation S from Y to Z.
The classical definition of the composition of the relations R and $ is
given as follows

Ro S ={(z,2) | Gy € Y)(zRy AySz)}.
The composition R o S is a relation from X to Z, consisting of those
couples (z, z) for which there exists at least one element of Y that is in
relation RT with z and that is in relation S with 2. The relation Ro S

is read as R before S or R followed by S. This definition can be written
in terms of after- and foresets in the following way

Ro S ={(z,2z) |zRN Sz # 0}.
Bandler and Kohout have introduced the following new compositions.
Definition 4.1. (Bandler-Kohout compositions)

R api S = {(m,z) ‘ R Q SZ}
Row S = {(z,2)| Sz CzR}
Roy S = {(z,2) | zR = S5z}.

These compositions are called products by Bandler and Kohout, more
specifically round product o, subproduct <z, superproduct bpr and square
product op.. The subproduct and superproduct are also called triangu-
lar products.

It is clear that definitions 3.1 of the new images have been in-
spired by definitions 4.1. It is surprising that the definitions of Bandler
and Kohout do not mention any non-emptiness condition. This is a
regrettable shortcoming. One easily verifies that

co(dom(R)) X Z C R apr S
X x co(rng(S)) € Ry S

The first expression means that z is in relation Rayi S with all elements
of Z even if there is no element of ¥ that is in relation RT with z.
A similar remark holds for the second expression. In this way, the
compositions R xS, Ropr S and Ropr S can contain a lot of unwanted
couples. It is clear that only those couples can be accepted for which
both components are involved in the relations. An apparent solution
would be to consider only those relations R for which dom(R) = X and
rmg(R) = Y. This becomes too big a restriction when one wants to
consider several relations between the same universes. It is unrealistic
that all of these relations would have the same domain and range.
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The intention of this section is to improve the definitions of Ban-
dler and Kohout and to carry out a close examination of the properties
of the compositions and the relationships between these compositions.

4.2. Definition

Consider a relation R from X to Y and a relation S from Y to Z.
Definition 4.2. (De Baets-Kerre)
RaS§ ={(z,2z) |0 CzR C Sz}
Ro S ={(z,2) |0 Cc Sz C zR}
RoS={(z,2) |0 CzR= Sz}.
These compositions are called the sub-, super- and square composition.
Remark 4.1. The non-emptiness conditions imply that all composi-
tions are contained in dom(R) x rng(R). As for the imdges, an equiva-
lent way of defining the new compositions is the fQHowi'gg
RaS=(RoS) N {(z,z) |zR C Sz} }
ReS5=(RoS) N {(z,2) | Sz C zR}
RoS=(RoS) N {(z,2) ]| zR = Sz}.
Example 4.1. The compositions of two relations can also be illustrated
on an example from medical diagnosis. Considey/a set of patients X, a

set of symptoms ¥ and a set of illnesses Z. Let R be the relation from
X to Y defined by

zRy < patient z shows symptom y
and S the relation from ¥ to Z defined by
A ySz & y is a symptom of illness z.

The compositions of R and S are given by

o z(R o §)z & patient z shows at least one symptom of illness z,

o 2(R 4 5)z & all symptoms shown by patient = are symptoms of
illness z (and patient z shows at least one symptom), '

o z(RpS)z < patient = shows all symptoms of illness z (and patient
z shows at least one symptom), \

e (R0 S)z & the symptoms shown by patient z are.exactly those
of illness z (and patient z shows at least one symptom).

4.3. Relationships between the compositions

4.3.1. Containment. A first series of properties concerns the refining
nature of the compositions.
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Properties 4.1. (Containment)
RoS=(RaS)N(R>S)
RoSCTR<«SCRoS
RoSCReSCRoS.
4.3.2. Relationships. A similar investigation is carried out as for
the images. The new compositions can be expressed in terms of the
classical composition in the following way.

Properties 4.2.
R4S =co(Ro(coS))N(dom(R) x Z)
Ro> S =co((coR) o 5)N (X xrng(S5))
Ro S = co(R o (coS))Nco({coR)o S)N (dom(R) x Z)
=co(R o (coS)) Nco((coR) o §)N (X x rng(S5)).
Proof. As an example, the first equality is proven.
(z,2) € co(R o (coS)) N (dom(R) x Z)
& —(z,2) € Ro(c0S)) A (z € dom(I2))
& (zRN(coS)z#0) A zR#D
S zRNco(Sz)=0 A zR# 0
S PczRCSE
& (z,z) ERaS. O
The inverse relationships are given next.

Properties 4.3.
RoS = co(R<(coS))N(dom(R) x Z)

Ro S =co((coR) > S)N (X xrng(S)).

Bandler and Kohout established the following relationships for
their definitions
Rbbk S = (COR) <pk (CO S)
R bk S = (COR) Optk: (co S)
Finding the correct relationships for the improved definitions is a deli-
cate matter. These relationships between the subcomposition and the
supercomposition are given next.
Properties 4.4.
R4S =((coR)p(coS)N(dom(R) x Z)) U (dom(R) x co(rng(co 5)))

Ro S = ({coR)a(coS)N(X x rng(S)) U (co(dom{co R)) x rng(5)).
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Proof. As an example, the second equality is proven. First note that
(z,2) € co(dom(co R)) x rng(5) & 2R =Y A Sz 0.

Then it follows

(z,2) € ((co R) 4 (coS) N (X x rng(S))) U (co(dom(co R)) x rng(S))

& (0 Cco(zR) Cco(Sz) A Sz#0) V (zR=Y A Sz#0)
S0 CSzCzR A zR£Y) V (zR=Y A Sz#£10)
& (z,z) €ER>S. ¢

To conclude this paragraph, the following relationship is mentioned.

Property 4.5.

RoS = ((co R)o&cp S5)N(dom(R)x Z))U(co(dom(co R)) x co(rng(co )))

—

(z,2) € ((co R) ¢ (co S) N (dom(R) x Z))U
U (co{dom(co R)) x co(rng(co 5)))
& (0 Cco(zR) =co(Sz) A zR#0) V.(zR=S5z=Y)
& (@CzR=S52z A zR£Y)V (CzR=52=7)
& (z,2) €RoS. ¢ //

. 4
Proof. L
5
i)
B!

4.3.3. Expressions in terms of after- and foresets. The classi-
cal composition can be written in terms of after- and foresets in the
following way. '

Property 4.6.

RoS= U(RyxyS).

yeEY
Proof.
(z,z) € U(Ry xyS)e (yeY)z € Ry A z€yS)
yey & (FyeY)yezR A ye S

@mRﬂSz#@@(m,z)eRo\S< O

In contrast with the expressions of the new images in terms of
aftersets, the expressions of the new compositions in terms of after-
and foresets are not so elegant. For instance, the subcomposition can
be expressed as follows
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RaS = ( ﬂ ((co(Ry) x Z) U (Ry x yS'))) n ( U (Ry x Z))
yey yeY .

4.3.4. Convertibility. Important relationships exist between the

converses of the compositions of two relations and the compositions of

the converses of these relations. These convertibility properties are a

welcome help when proving other properties.

Properties 4.7. (Convertibility)

(RoS)T = 8T RT
(RaS)T =576 RT
(R>S)T = 5T 4RT
(RoS)T =5T o RT.

4.4. Monotonicity

In this subsection the relationship is investigated between the compo-
sitions of a subrelation of a relation and the compositions of this latter
relation and a given relation.

Properties 4.8. (Monotonicity)

R; C R2=>R1052R205

(dom(Rl)zdom(Rg) A Rl - R2)=> R2 QSQ R4S
R]_RzziRlDSgRQDS

51 C Sg=>R051§ROSZ

Slg .5'2:>R<1.5'1§R<152

(rng(S51) =mg(S2) A S1C S3)= RS, C Ro S;.

N

Proof. As an example, the second property is proven:
(.‘E,Z)ERQQS@@CIBRQ C_:SZ#@CIRl gSz(:}(I,Z)Equs.O

4.5. Interaction with union and intersection

As for the images the relationship is investigated between the com-
positions of the union and the intersection of an arbitrary family of
relations and a given relation and the union and the intersection of the
compositions of each of these relations and that given relation.

Consider an arbitrary non-empty family (R;);es of relations from
X to Y and a relation S from ¥ to Z.
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Properties 4.9. (Interaction with union)

(UR)os=U@es)

el iel
NE:as)c (JR)ascJ®Rias)
el iel iel
(UR,) DSQ U(RiDS).
i€l el

Properties 4.10. (Interaction with intersection)

(ﬂRi)osgﬂ(RioS)

- el - i€l s
) (ﬂRi>>S=m(Ril>S). & ‘t\
i€l icl . 3

o
Similarly, consider a relation R from X to Y and an arbitrary non-

empty family (S;)ier of relations from Y to Z.
Properties 4.11. (Interaction with union) :

Ro (|Js:) = U(Bo é,-)

il i€l
Ra (US{) 2 U(Rdsi)
el ieT
N(R>S:) S Ro (U 5',-) c | JReS).
i€l el i€l

Properties 4.12. (Interaction with intersection)

Ro (()S:) € (V(ReS)

iel i€l
R« (ﬂ S’i) = ﬂ(RdSi).
i€l i€l \

4.6. Associativity '
Compared to the study of the images, a new issue comes up in the study
of the compositions, namely that of associativity. It is well-known that
the classical composition of relations is associative. In this subsection
other possible associativity properties are investigated.
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Consider a relation R from X to Y, a relation S from Y to Z and
a relation T from Z to U.

Properties 4.13. (Associativity)
Ro(SoT)=(RoS)oT
Ro(S>T)C(RoS)oT
Ra(SoT)D(RaS)oT
Ra(S4aT)C(RoS8)aT
Ra(S>T)=(RaS)>T
Ro(SoT)D(ReS)pT.

Proofs.
2. First note that
(z,u) ERo(SpT) & zRN(S>T)u#0
& (JyezR)(y € (S>THu)
& (Fy € zR)(B C Tu C yS)
& (AyezR)(VzeTu)z€yS) A Tu#0 (A)
and
(z,u) € (RoS)pT & 0 CTuCz(RoS)
&S VzeTu)z€z(RoS)) A Tu##b
& VzeTu)(aRNSz#0) A Tu#§
& (VzeTu)(TyeczR)(ye Sz) A Tu+#D
< (VzeTu)(Ty €zR)(z€yS) A Tu#0 (B).

Comparing expressions (A) and (B) shows that expression (B) follows
from expression (A) but not conversely. Hence Ro(S»T) C (RoS)»T.

3. Follows immediately from the foregoing property using the
convertibility properties.

TTo (ST RT) C(TT 0 §T) s RT
& (TTo (87> RT)T c ((TT 0 7)o RTT
& STe ROY)ToT CRa(TT 0 STHT
& (R<4S)oTCRa(S0T).
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4. First note that

(z,u) € Ra(S<aT) & P CaRC(SaT)u

S aR#£0 A VyezR)(y € (SaT)u)

< zR#AD A (VyezR)(® CyS CTu)

S zR#£DQ A (Vy € zR)(yS #0) A (VyezR)(Vz € yS)(2€Tu) (A)
and

(z,u) E(RoS)<«T &P Cz(RoS)CTu

& (FzeZ)z€z(RoS)) A VzeZ)z€x(RoS)= 2z€Tu)

& (3z2€Z)(2RNSz#0) A (Vz€ Z)zRNSz# 0= 2z € Tu) (B).
It is easy to show that expression (B) can be deduced from expression
(A). -

Indeed, from zR £ 0 A (Vy € aR)(yS # (0) it ollov\s that
(Jy € Y)(3z € Z)(y € zR A z € yS) and thus (Iz €:Z)(zR N Sz # 0).
Consider z € Z such that zRN Sz # 0. This means that (Ey eY)(y €
gRAy € Sz) and thus (Jy € Y)(y € zRA z € yS). With (A) it follows
that z € T, and hence (B). Notice that from (B) it does not follow
that (Vy € zR)(yS # 0) ! ;
5 (z,u)€eRa(SpT) & 0CzRC(S>Tu
S zR#Q A (VyeczR)(ye(SvT)u)
SzR#AD A (VyezR)(D C Tu CyS)
SIRAD A Tu#0 A (Vy€zR)(Vz € Tu)(z € yS)
SazR#D) A Tut0 A (VzeTu)(Vy € zR)(y € Sz)
STu#b A (VzeTu)® CzRC Sz)
&0 CTuCz(RaS)
& (z,u) € (R<«S)pT.
6. Follows immediately from the fourth property using the con-
vertibility properties. ¢
Remark 4.2, \
o Only the first property is an example of genuine associativity, while
the fifth property can be seen as some kind of mixed aSsociativity.
Due to the equalities in these properties the following notations
are justified: RoSoT and R« SpT.

e For their definitions, Bandler and Kohout found the following as-
sociativity properties
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Rdbk (5 bk T) = (R o] S) <pk T
R dpk (S Dy T) = (R bk 5) Dpr T
Rbbk (SOT) = (Rbbk S) Dyl T.
Comparing these results with properties 4.13 shows that for the im-

proved definitions the first and the third of these equalities become

inequalities. Moreover, some new properties have been discovered.
¢ Concerning the fourth property it is easy to show that the equality

does not hold in general. Let X = {z}, ¥ = {y,,1n}, Z = {z}
and U = {u}. Let & = {(z,41),(t,12)}, S = {(31,2)} and T <
= {(z,u)}. It is easy to see that (z,u) € (Ro S) < T while (z,u) ¢
gRa(SaT).

5. Conclusion

It has been shown that the compositions of Bandler and Kohout
are subject to some improvement. Modified definitions have been sug-
gested and have been studied intensively. Throughout the overview of
uheir properties, it has been indicated that most of the properties of
the Bandler-Kohout compositions are no longer valid for the new defi-
nitions. Similar to the new compositions, new images of a set under a
relation have been introduced and have been discussed in detail. This
paper serves as a reference for researchers working with compositions

of relations. ,
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