Mathematica Pannonica
3/2 (1992), 51 - 57

A GENERALIZATION OF CARISTI’S
FIXED POINT THEOREM

1. Cirié¢*
Matematicks Institut, 11001-Beograd, Knez—Mihailova 35, Yugo-
slavia :

Received March 1991
AMS Subject Classification: 54 H 25, 47 H 10

Keywords: Common fixed point, complete quasi-metric space, lower semi—

continuous function.

Abstract: General common fixed and periodic point theorems are proven
for a class of selfmaps of a quasi-metric space which satisfy the contractive
conditions (1), or (7), or (8), or {(10) below. Presented theorems generalize
and extend Caristi’s Theorem [2]. Two examples are constructed to show
that an introduced class of selfmaps is indeed wider than a class of selfmaps

which satisfy Caristi’s contractive definition (C) below.

1. Introduction. Let X be a non—void set and T : X — X a
selfmap. A point z € X is called a periodic point for T iff there exists a
positive integer k such that T%z = z. If k = 1, then z is called a fixed
point for T'.

J. Caristi [2] proved the following an important contraction fixed
point theorem.
Theorem 1 (Caristi [2]). Suppose T: X — X and ¢ : X — [0, 00),
where X 1s a complete metric space and ¢ is lower semi-continuous. If

for each z in X
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(o) | d(z,Tz) < $(z) — $(Tz),

then T has a fized point.

Th. 1 is sometimes called a Caristi-Kirk-Browder theorem (see
[5]). Recently A. Bollenbacker and T. Hicks [1] revisited Th. 1. Var-
ious proofs of Th. 1 were presented later in [11, 13, 15]. It is known
that Caristi’s theorem is essentially equivalent to Ekelend’s variational
principle [5]. Up to new many extensions of Caristi’s result have been
obtained [6, 7, 8, 9.

The purpose of this paper is to introduce and investigate a class
of selfmaps which satisfy a contractive condition weaker than (C) and
still have a fixed or periodic point.

2. Main results. We begin with some notation needed in the
sequel. A pair (X, d) of a set X and a mapping d from X X X into the
real numbers is said to be a quasi-metric space iff for all z,y,z € X:

(1) d(z,y) > 0 and d(z,y) =0iff z =y,
(2) d(z,2) < d(z,y) + d(y, z).
Let d; : X — [0, +00) be defined by d.(y) = d(z,y). Let N denotes the

set of all positive integers.

A sequence {z,} in X is said to be a left k-Cauchy sequence
if for each & € N there is one N such that d(z,,zm) < 1/k for all
m > n > Ni. A quasi-metric space is a left k-sequentially complete if
each left k—Cauchy sequence is convergent (compare [12, 14]).

Now we are in position to state the following result.

Theorem 2.1. Let (X,d) be a left k-complete quasi-metric space and
let for each = € X a function d; be lower semi-continuous (ls.c) on
X. Let F be a family of mappings f : X — X. If there ezists Ls.c.
function ¢ : X — [0,00) such that for each z € X:

(1) d(z, fz) < ¢(z) — ¢(fz) for all f € F',

then for each z € X there is a common fized point u of F' such that
d(z,u) < ¢(z) — s, where s = inf{d(z) : z € X}.

Proof. For any z € X denote
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5(z) ={y € X : d(z,y) < ¢(z) — ¢(v)},
a(z) = inf{$(y) : y € S(z)}.
As z € S(z), S(z) is not empty and 0 < a(z) < ¢(x).
Let z € X be arbitrary. Put z; = z. Now we shall choose a
sequence {z,} in X as follows: when z;,z,,...,z, have been chosen,

choose zn11 € S(zn) such that ¢(znq1) < a(zn)+ 1/n. In doing so,
one obtains a sequence {z,} such that

(2) d(xnaxn-i-l) < ¢($n)‘“¢(zn+l)5 a(z,) < $(znt1) < a(:cn)—l—l/n.

Then, as {¢(z,)} is a decreasing sequence of reals, there is some a > 0
such that

(3) a =lim ,¢(z,) = lim pa(z,).

Let now k € N be arbitrary. From (3) there exists some Ny such
that ¢(z,) < a4 1/k for n = Ni. Thus, by monotonocity of {#(z)}
for m > n > Ni we have a < ¢(zr) < é(zn) < a + 1/k and hence

(4) #(zn) — ¢(zm) < 1/kfor allm > n > Ni.
From (ii) and (2) we get

(5) d(xnaxm) < i d($3,$3+1) < ¢($n) - ¢($m) .

Then by (4) we have
d(Tn,zm) < 1/kfor allm >n > Ny.

Therefore, {z,} is a left k~Cauchy sequence and, by completeness of
X, it converges to some u € X.
Since d; and ¢ are Ls.c. functions, by (5) we have

d(zpn,u) <lim p, inf d(zp, 2, ) < lim ,, sup d(zn,Zm) <
< §(@n) + lim . 5up[— (5] = §(zn) — litm e inf () <
< é(zn) — (u).
Thus u € 5(zn) for all n € N and hence a(z,) < ¢(u). So by (3),

a < ¢(u). On the other hand, by Ls.c. of ¢ and (3), we have ¢(u) <
<lim,inf ¢(z,) = a. Therefore, é(u) = a.
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Now we shall show that fu = u for all f € F. Suppose not and
let f € F be such that fu # u. Then (1) implies ¢(fu) < ¢(u) = a.
Hence, by (3), there is a n € N such that

(6) $(fu) < alza).

Since u € S(zy) for all n € N, we have

d(xru fu) S d(.’L‘n, U') + d(ua f’U.) .<_ [(ZS(CEn) - ¢(U')] + [¢(U) - ¢(fu)] =
= ¢(zn) — ¢(fu).

Hence we conclude that fu € S(z,). Hence ¢(fu) > a(zn), which
is a contradiction with (6). Therefore, fu = u for all f € F. Since
u € S(zn) implies

d(zn,u) < §(zn) — $(u) < §(z) —inf{p(y) 1y € X} = ¢(z) —s. O

The following result contains the above theorem.
Theorem 2.2. Let E be a set, (X,d) as in Th. 2.1, g: E — X @
surjective mapping and F = {f} a family of arbitrary mappings f :
: B — X. If there exzists a ls.c. function ¢ : X — [0,00), such that

(7) d(ga, fa) < ¢(ga) — ¢(fa) for all f € F

and each a € E, then g and F has a common coincidence point, that
is, for some v € E gv = fv forall f € F.

Proof. Let £ € X be arbitrary and v € X as in Th. 2.1. Since g is
surjective, for each z € X there is some a = a(z) such that ga = z. Let
f € F be a fixed mapping. Define by f a mapping h = h(f) of X into
itself such that hz = fa, where @ = a(z), that is, ga = z. Let H be a
family of all mappings h = h(f). Then (7) implies

(8) d(z,hz) < ¢(z) — ¢(hz) for allh € H.
Thus, by Th. 2.1, u = hu for all h € H. Hence gv = fv for all f € F,

where v = v(u) is such that gv = u. ¢

The following result is related to periodic points.
Theorem 2.3. Let (X,d) and ¢ be as in Th. 2.1. Let T : X — X be
an arbitrary mapping. If for each z € X there is n(z) in N such that

(9) d(z, T"Pz) < §(z) — J(T")),

then T has a periodic point.
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Proof. Define f : X — X by fz = T™®)z. Then by Th. 2.1 (with F
singleton) fu = u for some u € X. Hence T™®)y = v that is, u is a
periodic point of T. ¢ ' o ‘
Remark 2.1. Example 2 below shows that a periodic point in Th. 2.3
need not be a fixed point. Therefore, one must add some hypothesis in
order to ensure that T possesses a fixed point. © o
Theorem 2.4. Let (X,d) and ¢ be as in Th. 2.1 and let T : X — X
be a mapping. If for each z € X, with Tz + z, there is n(z) € N and
a real number C(z) > 0 such that

(10)  max{d(z, T"*)z),C(z) - d(z, Tz)} < () — $(T™z),

then T has a fized point.

Proof. If we suppose that T"z # z for all n € N, then we can choose
C(z) such that (10) reduces to (9). Then by the proof of Th. 2.3
T™*)y =y for some u € X. Therefore, from (10) we have

max{0, C(u) - d(u,Tu)} < ¢(u) — ¢(u) = 0.

If we suppose that u # Tu, then C(u) > 0 and so we have
C(u)-d(u,Tu) <0, a contradiction. Therefore Tu = u. ¢

Remark 2.2. It is clear that if T' satisfies (C), then T satisfies (10)
with n(z) = 1 and, for instance, C(z) = 1. Therefore, Th. 1is a special
case of Th. 2.1, even if (X, d) in Th. 2.1 is a metric space. Example 1
below shows that Th. 2.1 is a proper generalization of Caristi’s Th. 1.
Remark 2.3. In [14] is given an example of a quasi-metric space (X,d)
with d; continuous for each z that is not metrizable.

3. Examples. 1. Let X = {0} U{xl/n: n=1,2,...} with the
usual metric. Define T': X — X by T(1/n) = —1/(n + 1), T(-1/n) =
=1/(n+1) and T(0) = 0. Define ¢ : X — [0, 400) by ¢(z) = d(z,Tz).
Then for z = +1/n we have
d(z,Tz) =1/n4+1/(n+1): d(z,T%z) = 1/n=1/(n+ 2).
Hence .
d(z,T*z) =1/n—1/(n+2) < 1/n+1/(n +1)—
~[1/(n+2) +1/(n +3)] = ¢(z) - ¢(T?).

Since for each z = +1/n we can choose C(41/n) < 2(n + 1)/(n + 2)?,
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we conclude that T satisfies (10) for each z in X with n(z) = 2 (and
n(0) = 1). As X is a complete metric space and ¢(z) = |z|+|z|/(1+|z])
is continuous on X, we conclude that Th. 2.4 can be applied and z =0
is a fixed point.

To show that Caristi’s theorem is not applicable, we shall show
that there is not a function ¢ : X — [0, 00) such that T' satisfies (C).
We pointed put [4] that such a function exists if and only if the series
Y d(T™z,T™"'z) converges for all z € X. Since in our example for

n=0
any fixed z = £1/mg we have

d(T"z, T" 'z) = 1/(n+mo) +1/(n + 14+ mo) > 2/(n+ 1+ myg),

we conclude that the above series is divergent and hence there is no
function ¢ such that (C) holds for any z = +1/n in X.

2. Let X = [-2,—-1] U [1,2] with the usual metric. Define T :
: X — X by Tz = —z. Then T satisfies (9) with n(z) = 2 for any

(continuous) function ¢ : X — [0, 400).
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