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Abstract: In this paper we present an introduction to a theory of pow-
ers and (generalized) cardinal numbers which is based on the infinite-valued
Lukasiewicz logic and refers to so-called HCH-objects, i.e. to objects which
in general cannot be mathematically modelled using the notion of a set. We
focus here our attention on the notion of equipotency for HCH-objects and
the construction of generalized cardinals and their basic properties. Problems
related to order and operations on the generalized cardinals will be discussed
in [24,25].

1. Introduction and notations

The purpose of this paper is to present mathematical base of a
theory of powers and generalized cardinal numbers for hardly charac-
terizable objects, shortly HCH-objects. By HCH-objects we mean here
parts of some infinite universal set & which maybe are vaguely defined
and do not need to be sets themselves, i.e. which in general cannot
be mathematically modelled, without essential distortions, using the
classical notion of a (sub)set (cf. semisets [18]). However, we assume
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that each HCH-object can be described, at least in a subjective way,
by means of a function & — L or using a pair of such the functions (£
denotes a suitable lattice). These functions will be called generalized
characteristic functions or membership functions. This way sets, fuzzy
sets ([27]), intuitionistic fuzzy sets ([16]) and generally £-fuzzy sets ([4];
cf. Heyting algebra valued sets in [9]), twofold fuzzy sets ([3]), rough
sets ([13]), and partial sets ([10]) become special cases of HCH-objects.
HCH-objects which are not sets will be called proper HCH-objects.

So, although the given definition of an HCH-object is rather infor-
mal, it is sufficiently good for our purposes because in a way it makes
possible to bring together those more or less different notions what is
very convenient for the presentation of the theory (see e.g. Section 8).

If A: U — L, then obj(A) denotes the HCH-object ’embedded’
in U and described (characterized) by means of A. Since obj(A) is
not necessarily a set we shall write zeobj(A) instead of z € obj(A);
obviously, obj(A) is a set if A(z) € {0,1} for each z from #. Then
[z € obj(A)] := A(z), where [s] denotes the truth value of a sentence
s (obviously, [s] € £) and the symbol := stands always for ’equals by
definition’. Each value A(z) will be called membership grade of z in

" obj(A). Moreover, we accept the following definitions:

[—s] :=[s] — 0,

[r&s] :=[r] A[s],

[r | s]=[r] VI[s],

[r = s]:=[r] = [s],
res)l=r=s&s=r,

Wz el : s(z)] := /\ [s(:c‘/a)],_

acU
Hz el :s(z)]:= \/ [s(z/a)],
a€U
where
(a) =, &, |, =, & are logical symbols of negation, conjunction, dis-

Junction, implication, and equivalence, respectively;
(b) ¥ and 3 denote general and existential many-valued quantifiers and
s(x/a) is the usual substitution notation (classical quantifiers will be

denoted by V and 3);
(c) A, A (V, V , resp.) denote the operation of the greatest lower
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bound (least upper bound, resp.) for two arguments or their arbitrary
number;

(d) — denotes many-valued implication operator; we additionally as-
sume that it fulfills two properties: b —-c=1 iff 6<c,l1 ->b=5b
for each b, c € L.

Generahzed inclusion obj (A)C obj(B) and equality obj(A4) =
~obj(B) of two HCH-objects are respectlvely defined by the conditions

Vz € U : z € obj(A) = z € obj(B),

and

obj(A4) C obj(B) & obj(B) C obj(A).

Of course, the usual two-valued inclusion and equality one defines by
obj(A) Cobj(B)iff AC Bwith AC Biff V2 € U : A(z) < B(z),
obj(A) = obj(B) iff A= B with A= B iff Vz € U : A(z) = B(=z).

We at once see that

obj(A) C obj(B) iff [obj(A) Cobj(B)] =1
obj(A) = obj(B) iff [obj(A) ~ obj(B)] = 1.

The conditions defining union and intersection of two HCH-objects are
also quite natural, namely

obj(A) Uobj(B) = obj(C) iff C = AU B, where (AU B)(z) :=
:= A(z) V B(z),

obj(A) Nobj(B) = obj(D) iff D = AN B, where (AN B)(z) :=
:= A(z) A B(z).

So, the sentence z € obj(A)Uobj(B) (z € obj{A)Nobj(B), resp.) has the
same truth value as the sentence z € obj(A) | z € obj(B) (z € obj(4) &
& z € obj(B), resp. .

Nowadays (proper) HCH-objects play an important role in many
branches of mathematics, computer and information sciences, social
sciences, engineering, etc. It is quite clear that in many situations
there is a necessity of having (as precise and adequate as possible)
handy quantitative information about an HCH-object. So, it would
be very useful to have for HCH-objects some counterpart of cardinal
numbers. Such a reasonable counterpart will be constructed here and
will be called generalized cardinal numbers (shortly gen’s).
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In this paper we like to present a detailed discussion devoted to
such basic questions as equipotency of HCH-objects, gen’s - their con-
struction and elementary properties, the notion of finiteness for HCH-
objects. Problems of comparing and ordering for gen’s will be presented
in [24], operations on them are studied in [25]. We construct the the-
ory for quite arbitrary HCH-objects and use here the infinite-valued
Lukasiewicz logic; some results for HCH-objects with finite supports are
already placed in [21,22]. So, we put £ := J, where J := [0, 1], whereas
— is the Lukasiewicz implication operator, i.e. b = c:=1A1—b+¢;
of course, A, A and V, \/ denote then usual operations of minimum,
infimum, maximum, and supremum of numbers from the closed unit
interval. It is however possible to construct an analogous intuitionistic
theory of powers and gen’s for HCN-objects using triangular norms and
(p-operators or applying intuitionistic logic with £ := complete Heyting
algebra (see [26]).

As regards the notation and terminology, we decide to use trough-
out this paper the following additional rules:

(a) Sets are denoted by script capitals (e.g. D,.J,U) and some multi-
letter symbols defined in the sequel of the paper; as usual § denotes the
empty set.

(b) Capitals in italic denote the membership functions. The functions
E and U are defined as follows: Vz € U : E(z) =0, U(z) = 1.

(c) The letters i,j,.....,p,q denote both the finite and transfinite numbers.
(d) Small Greek letters with or without subscripts (e.g. a, By,q) will
denote the generalized cardinal numbers related to HCH-objects.
(e)IfA:U — J, then supp(obj(A)) :=supp(4):={z €U : A(z) #
# 0}; so, the so-called support of obj(A) and support of A are identi-
cally defined. Moreover 4; := {z € U : A(z) > t}for t € J, := (0,1];
A; will be called t-level set of A and obj(A).

(f) PS(D) :={0,1}? ,GP(D) := JP, Py(D):={BCD:card B =i}.
(8) 1p denotes the characteristic function of D C U, i.e. 1p(z) =1

if z € D else 1p(z) = 0. So, E = 14.

(h) CN denotes the set of all the cardinals i such that card & > s,
betw(z,j) :={k€ CN :: <k <j}fori,j € CN.

(1) ¢t denotes the succesor of i. Thus i+ = + 1 for finite .

(j) For the simplicity of the presentation, in the examples placed in
Section 8 we will accept the Continuum Hypothesis and use some special
notation for elements P € GP(CN). Namely
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P = (00,01, eerry Up,y (V) || w1, w2)

means that P(i) = v; for ¢ € betw(0,7), P(:) = v for each finite 1 > r,
P(Rg) = wy, P(¢) = wq, P(z) =0 for i >¢. For instance, if P = (1,1,
0.5,(0.3) || 0.3,0.1), then we have P(0) = P(1) = 1, P(2) = 0.5,
P(i) = 0.3 for 7 € betw (3,80), P(¢) =0.1, and P(z) = 0 for i >¢.

2. Towards generalized cardinal numbers

In the earlier many-valued theories of cardinality presented in [1],
[5,6], [11] one assumes at the beginning that the notion of cardinality
is unknown even for sets; gen’s are then constructed via many-valued
bijections,i.e. via direct adaptation of the classical construction of car-
dinals. Unfortunately, such an approach is not successful and appears
not very useful in practice because the obtained theories become essen-
tially dependent on the chosen definitions of such the bijections and,
on the other hand, respective calculations of powers are extremely dif-
ficult even in the case of small finite supports (see also [2], [7 ], [19,20]
for a review of some other early approaches). In the theory proposed
here we use quite different approximative approach in which we try to
make a good use of the already existing ordinary cardinals and apply
some axiomatic method that generates various types of gen’s. So, we
have then the possibility to choose such a type which is most suitable
in a concrete application inside or outside mathematics. Moreover, we
assume that our information about any membership function can be
imprecise or incomplete.

Let us consider the family composed of all the subsets of . We
define classical cardinals in the ordinary way. So, for any A C U we
have card A = ¢ iff 3B € P;(U) : A = B, i.e. the power of A equals ¢
iff A belongs to respective family of equipotent sets. It is quite clear
that for each fixed A the sentence 3B € P;(U) : A = B is true (in
other words: has positive truth value) for exactly one cardinal number i.
However, if we deal with HCH-objects, then in general the many-valued
counterpart IB € P;(U) : obj(A) = obj(1p) attains positive truth
values for different i’s. So, one can say that obj(A) belongs “to a degree”
to many families of equipotent sets. Thus the power of obj(A) cannot be
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represented by one cardinal number but should be expressed by means
of an HCH-object 'embedded’ in CN and having the membership grades
identical with respective truth values of the above given many-valued
sentence. Then it is quite natural to consider as equipotent such HCH-
objects obj(A), obj(B) in U which are related to identical HCH-objects
in CN. Since our information about A can be imprecise or incomplete
we additionally assume that f(A) C A C g(A) , where f and g are
some approximating functions (see Section 3). Therefore we finally use
the condition

dIB € P;(U): obj(f(A)) Cobj(ls) &
& JC € Py(U): obj(le) C obj(g(A))

which in some cases can be rewritten in a simpler from (see Remark 6.5).
In the main, in this paper we focus our attention on such properties of
gen’s which are independent on the choice of (f, g) and on the power of
supp(obj(A)). Simple proofs are given in outline. Although =, & and |
are basically understood as many-valued connectives, in the sentences or
conditions containing exclusively the classical (two-valued) quantifiers,
relations or predicates they will be throughout interpreted as respective
classical connectives. '

3. Approximation of the membership functions

Let A denote a membership function characterizing some HCH-
object in U. As we mentioned in previous section, we suppose that in
general A can be given imprecisely or incompletely. So, we approximate
A by means of two other functions f(A) and ¢g(A), i.e. we approximate
obj(A) by obj(f(A)) and obj(g(A)), where f,¢g : GP(U) — GPU).
However, we assume that either at least one of the functions f,g is a
function to PS(U) C GP(U) (i.e. at least one of the HCH-objects
obj(f(A)) and obj(g(A)) is in a way simpler than obj(A)) or f = g =id
with id denoting the identity function (i.e. our information about A is
assumed to be perfect). Moreover we accept the following additional
axioms about f and g:

(A1) VA e GP(U): f(A) Cc A C g(4),
(A2) VA, B € GP(U)Vz,y € U : A(z) < B(y) = f(A)(z) < f(B)(y)&

& 9(A)(z) < 9(B)y),
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(A3) VA e PS(U) : f(A),g(A) € PS(U).

The family of all the pairs (f,¢) of approximating functions fulfilling
these postulates, but excluding the trivial (E, U), will be denoted by F.
As regards some interpretation of the axioms, (Al) means that f(A)
and g(A) are always the lower and upper approximations of A,(A2) says
that both f(A)(z) and g(A)(z) depend only on A(z). Finally, (A3) is
also quite natural and states that if obj(A) is a set, then both obj(f(4))
and obj(g(A)) are sets too. As consequences of (A1) —(A3) we get some
simple but useful properties which are listed in the following theorem
and corollaries.

Theorem 3.1.For each (f,g) € F and each A, B € GP(U) we have
(A2)" A(z) = B(y) implies f(A)(z) = f(B)(y) and g(A)(=) = g(B)(y);
(A1) f(AUB) = f(A)Uf(B) , g(AYB) = g(4) %4(B) ;
(A5) A C B implies f(A) C f(B) and g(A) C g(B);
(A6) A(z) =0 implies f(A)(z)=0 and g(A)(z) < {0,1},

A(z) =1 implies f(A)(z) € {0,1} and g(A)(z)=1;
(A6) F=E or (f(A)2) = Liff A(s) = 1),g=U or (9(A)(z) =0 iff

A(z) = 0);
(A7) If Ae PS(U), then f(A)=A or f(A) =FE and g(A) = A or
9(A) =U;

(A7) f(E)=E, g(U) =T, f(U),9(E) € {E,U}.

Proof. We get (A2)’ using twice (A2). (A4) is a direct consequence
of (A2), (A2)’ and the definition of U and N. (A5) is implied again by
(A2). (A6) follows from (A1), (A2)’, (A3) and implies (A6)’. Finally,
(AT) follows from (A6), (A6)" and implies (AT)". This completes the
proof.

Corollary 3.2  For each (f,9) € F and A € GP(U) we have

(a) if f:GP(U)— PSU) , then f=E or f(A)=1a,;

(bYif g:GPU)— PSU) , theng=U or g(A)= leuppa)
Proof. Both (a) and (b) are immediate consequences of (A6)". ¢

The corollary given above is very useful when one proves other theorems
because it shows how look the possible pairs (f,g) € F.

Corollary 3.3.  For each (f,g) € F and A€ GP(U) we have
(a) f(A)D1a, or f=E

(b) 9(A) C Lsuppa) or ¢g=U.

Proof. Again, it follows directly from (A6)". &
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4. Equipotent HCH-objects

Now we are ready to introduce the notion of equipotency for HCH-
objects. Let f(A):, g(A): denote the t-level sets of f(A) and g(A),
respectively.
Definition 4.1. We write A ~5, B and say that two HCH-objects
obj(A) and obj(B) in U are equipotent (in other words: are of the same
power) with respect to a pair (f,g) € F iff the conditions

Ad{t:card f(A) <i} = NA{t:card f(B): <3},
\/{t :card g(A) > i} = V{t : card g(B); > ¢}

are fulfilled by each cardinal number z.
If (f,g9) € F is fixed, one can write simply A ~ B. It is quite obvious
but very important that ~¢ , is an equivalence relation for each (f,9) €
€ F. Using very puristic notation we should rather write obj(A) ~ 4
obj(B) but the form A ~; , B does not lead to misunderstanding and is
more convenient in use. Also, it is justified by the fact that operations
or relations for HCH-objects are% often defined by means of respective
operations or relations over membership functions.

As concerns the condition defining the equipotency of HCH-ob-
jects, we at once see that it is a weakened form of the following (both
versions are equivalent for HCH-objects with finite supports):

Vt e (0,1): card f(A): = cara f(B)t& card gl(A)? = card g(B).

But any definition describing thé equipotency via equalities of powers
of some t-level sets is dangerous since it makes the equipotency to much
dependent on a finite number of membership values even if we deal with
HCH-objects with infinite supports. So, we refuse it. By using infima,
suprema and inequalities, the proposed definition reflects instead two
facts: first that f(A) and g(A) are lower and upper approximations of
A, and second that using an approximative approach we should accept
as equipotent not only such HCH-objects whose respective t-level sets

are equipotent but also such ones which for each t € J, have ’the same

amount’ of elements with membefrship values equal to t or lying as near

to t as one likes. }
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5. Relativity of the equipotency for HCH-objects

Let fi(A) := V{t :card f(A): > 2}, gi(A) := \/{t : card g(A); >
> 1} and a; := \/{t : card A; > i} for A € GP(U) and (f,g) € F (in
the same way one defines for instance numbers r; for some R € GP(U)).
One can easily check that f;(A) is nonincreasing with respect to ¢ and
fi(A) = O0fori > card supp(A); of course, analogous properties are
satisfied by g¢i(A) and a;. Also, one can easily prove that for each
A,B € GPU), (f,g9) € F and any cardinal number ¢ we have

ACB= fi(A) < fi(B)&gi(A) < gi(B)

and

fi(A) < a; < gi(A).

So, A C B implies a; < b; for each 7. Moreover the following properties
will be useful: f;(4) = 1fori < card f(A)1, f1(4) = V{f(4)(z) :
z €U}, and g,(A) =1.

5.1. Useful characterizations of the equipotency

We notice that the equipotency condition can be rewritten as
A~go, B it gi(A)=giB) & fi+(A)= fi+(B) for each i € CN.
So,

A~pg B Mt g(A) ~Eia9(B) & f(A)~iquf(B).
Hence
A~iguB iff A~Eg;aB & A~ quB;
we even have
An~igiaB fft A~pgpaB iff A~juB
ie. if (f,g) equals (id,id), (E,id) or (id,U), then A ~¢, B iff a; = b;
for each : € CN. Moreover, the following implications hold:
(a) if f(-) =1(), and g = id, then A ~f, B implies
card A; = card By;
(b) if f=1d and g(-) = lsupp(.), then A ~¢, B implies
card supp(A) = card supp(B) ;
(c) if f = E and g(-) = Leupp(.), then A~y , B iff card supp(A4) =
= card supp(B);
(d) if f(-) =1(y, and g = U, then A ~f; B iff card A; = card B ;
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(e) if f(-) =1, and g(-) = leupp(), then A ~¢ , B iff card 4; =
= card By & card supp(A) = card supp(B) .

So, the spectrum of possible conditions characterizing the equipotency
of HCH-objects is rather wide; of course, these and other characteriza-
tions can be enhanced for HCH-objects with finite supports. The most
interesting postulate is-however that a; = b; for each : € CN since we
like to have the equipotency independent on an order of elements in
HCH-objects . Really, let us notice that if A and B have finite sup-
ports, then this condition means that functions A and B attain the
same values (with regard to their repetitions) but maybe in different
points. This follows from the observation that if supp(D) is finite,
then d; is the i-th value in the sequence of positive membership grades
D(z) (including their repetitions) ordered in a nonincreasing way with
d, :=1 and d; := 0 for ¢ > card supp(D). Finally, let us notice that if
(f,9) = (E,U) were an element of F, then all the HCH-objects in U
are equipotent with respect to such (f, g).

It is possible that obj(A) and obj(B) are equipotent with respect
to some (f,g) € F but simultaneously they are not equipotent with
respect to some other (f*,¢*) # (f,g9) (one can easily give respective
examples for instance for (f, g) = (1(,),, Lsupp(.y) and (f*, ¢*) = (id, id)).
This fact is however not so surprising because we deal here with HCH-
objects whose nature is vague. Using two different pairs of approximat-
ing functions we apply in essence two different criteria to evaluate the
powers of those objects . This is analogous to the situation well-known
in our common life when two persons compare two things which are
vague in a way and they get different results.

5.2. Some criteria of choice for the approximating
functions

Since the family F is rather rich and, on the other hand, the
equipotency or nonequipotency of two HCH-objects depends in general
case on the choice of (f, g) € F , it is essential to ask how to choose (f, g)
in 'proper’ way; there is no problem with A, B € PS(U) because then
either A ~5, B for each (f,g) or the HCH-objects are nonequipotent
with respect to each (f,g) from F. Obviously, total instructions are
not possible. However, we like to present some approaches starting
from different motivations.
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APPROACH 1. We choose (f,g) taking into account how looks the
condition characterizing ~ ¢ ,.

APPROACH 2. If (f,g) # (id,id), then f(A) and g(A4) can be inter-
preted as components of a twofold fuzzy set (see Section 7). So, our
choice of (f, ¢) from among pairs differing from (id,id) depends on that
what elements in ¢/ are considered to be sure and possible elements of
an HCH-object .

APPROACH 3. We choose f = g = id if A is known exactly. Otherwise
we suppose that F' C A C G and that only F and G are given. The
choice of (f,¢) depends then on the form of F' and G. For instance, if
we know only all the points z such that A(z) > 0 and A(z) = 1, we
choose f(-) = 1(.), and g(-) = Leypp(.). If the lower approximation of A
is given only, one can take f =id, ¢ = U (or ¢(-) = Leupp () prov1ded
that we know all the points z such that A(z) > 0).

APPROACH 4. Some properties and the form of generalized cardinal
numbers are dependent on the used pair (f,g). So, one can choose
(f,9) so as to get such gen’s that have the most convenient form and
properties from the viewpoint of a concrete application.

6. The operator GCN and its basic properties

Now we are going to define an operator which will be used in
Section 7 to generate the generalized cardinal numbers. That is why it
is denoted by GCN. More precisely, let
GCN: GP(U) x GP(U)—GP(CN) and let GCN(F, G)(z) be equal to

[AY € Pi(Ud) : obj(F) Cobj(1y)] A[IZ € P;(U) : obj(1£) C obj(G)]
provided that F' C G. So, we have

Theorem 6.1. For cach F,G € GP(U) such that F C G and each
1€ CN

GCN(F,&) )= \/ AGar N 1-F(=

YerP;(U) =zl YeP(U) =&Y
Proof. This equality is obvious because for each i € CN and Y € P;(U)

we get

[obj(F) C obj(1y)] = A F(z) — 1y(z) = )\ 1- F(a)
zel =&Y
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and

[obj(1y) C obi(@)] = A 1y(z) — G(z) = A G(=).
zeU z€Y

Remark 6.2. One can easily notice that using (instead of the Lukasie-
wicz implication operator) a yp-operator induced by a triangular norm
or putting £ := complete Heyting algebra we obtain the formula

GON(F,G) ()= \/ AcG)r \ A Fz) —o

YEP;(U)z€Y YeP;(U) =&Y
We see that 7 > card(U) implies P;({) = 0§ and then GCIN(F, G)(z) =

= 0. This is why we always restrict ourselves to cardinals belonging
to CN. Moreover, it is quite clear that the following simplification is
possible:

GCN(F,G)(i).= V A G(=)A \V N\ 1-F(z).

YEP;(supp (G)) =€¥ {YeP;(U):F1CY} =&Y

Hence GCN(F,G)(:) =0 for each i ¢ betw(cardFi, card supp (G)).
Finally if ¢ > card supp (F), there exists J € P;(U) such that Fy C
C supp (F) C V. But then we get A{1 — F(z):z ¢ Y} = 1. So, for
each ¢ > card supp (F) we obtain

GCN(F,G)(3) = V N G(=).

YeP;(supp (G)) zEy‘

As a next corollary from Theorem 6.1. we have
Theorem 6.3. D C F C G C H implies GCN(F,G) C GCN(D, H).
Proof. D C F C G C H implies P;(supp (G)) C Pi(supp (H)) and
{Ye P(U): F; c Y} c{Y € PU): Dy C Y} Using Th. 6.1 and
the previous corollaries following therefrom, we at once obtain the final
thesis. &
Corollary 6.4. GCN(A4, A) C GCN(f(A),g(A)) for each A € GP(U)
and (f,g) € F.
Proof. It follows directly from (Al) and Th. 6.3. ¢
So, if A € GP(U) is fixed and we consider GCN(f(A), g(A)) with
different pairs (f,g) € F, then the least possible energy measure (see
e.g. [8], [12]) occurs when f = g = id. In other words, the least
deviation of GCIN(f(A),g(A)) from a function of the form 1y; for
some i € CN, i.e. the least deviation from a membership function
related to a classical cardinal number, is attained for f = ¢ = id.
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From now on, we shall always use F' = f(X) and G = g(X) as ar-
guments of the operator GCIN, where f and ¢ are some approximating
functions defined in Section 3 and X € GP(U) .

Remark 6.5. One can show that for each A € GPU) if (f,g9) #
# (id,id), then

GON(f(4), g(A))(5) = [3Y € PiU) : obj(f(4)) C obi(1y) C
Cobjlg(ANl =\ (N s@@ A A\ 1- F(A)=):

Yer;(U) z€y &Y
The same holds if (f,¢) € F is quite arbitrary and supp (A) is finite.
Now we like to express GCIN(f(A), g(A))(¢) in a form more simple
and convenient than that following from Th. 6.1.

Theorem 6.6. For each (f,9) € F, A€ GP(U) and i € CN we have
GCN(f(4),9(4))(2) = gi(4) A1 = fi+(A).

Proof. Let  Lyay,i = Vyep,(supp (s4)) Naey 9(4)(z). We shall
prove that L;4y; = gi(A4). Let us fix ¢ € CN and suppose that
Lyay,i < gi(A). Then there exists t* such that cardg(A)s > 1 and
Lyay,; < t*. But one can choose Y* € P;(supp (g(4))) such that
Y* C g(A)e=. Hence A{g(A)(z): z € Y*} > t* what leads to a contra-
diction.

Now, suppose that L;4); > ¢i(A). Then, again, there exists
Y* such that card Y* = ¢ and g¢;(A) < A{g(A)(z) : = € Y*}. Let
t* := gi(A). If card g(A): > 1 for each ¢, then t* = 1 and the previous
inequality cannot be true. So, we can assume that there exists ¢ such
that card g(A4): < ¢. Moreover, card g(A4);, < ¢ for each t. > t*.
But g(A)(z) > t* for each z € Y*. Hence g(A4)(z) > t« > t* for
each z € Y* and some ¢, > t*, ie. V* C g(A):;, what implies that
card Y* < card g(A);, < ¢ and gives this way a contradiction. So,
Lgay,i = 9i(A). The equality V(e p . raycyy Nagy 1 — F(A)(z) =
=1— f;+(A) can be proved in an analogous way. This completes the
proof. &
Remark 6.7. In the proof of Th. 6.6. we obtained two important
equalities which imply that

[3Y € Pi(U) : obj(1y) C obj(g(A))] = \/{t : card g(4), > i}

and

[FY € Pi() : obj(f(A)) C obj(1y)] =1 — A{t: card f(A4); <i}.




104 M. Wygralak

Thus, again, the equipotency condition could be rewritten in another
equivalent form. Using it one can formulate a generalized (i.e. many-
valued) version of the equipotency definition for HCH-objects and intro-
duce this way a notion of HCH-objects equipotent “to a degree a € J".
However, we shall use here only the sharp two-valued Def. 4.1 which
is quite sufficient if one likes to construct an applicable and useful the-
ory. On the other hand, this definition accepts also some vagueness
and subjectivity of the equipotency by the presence of the approximat-
ing functions which after all can be chosen from F quite arbitrary (cf.
Section 5.2).

Applying Cor. 3.2 and Th. 6.6. one can express the membership
values to obj(GCN(f(A),g(A4)) in more explicit way. It suffices to
consider the following variants of pairs (f,g) € F : f = ¢ = id, g is
arbitrary and f = E or f(-) = 1(y,, f is arbitrary and g = U or
9(*) = lupp (-)- We easily notice that

om0 = {1 o

where z4 5= N\{i € CN : gi(A) + fir(4) < 1} .
Theorem 6.8. For each A € GP(U) the following properties are ful-
filled:

(a) GCN(E, g(A))(i) = gi(A) for cach i € CN.
0 if 1 < card Ay,
(b) GCN(14,,9(A)() = { 1 if 1 =card 4,
gi(4) otherwise.
(c) GCN(f(A),U)(7) =1 — fi+(A) for each i € CN.
1— fi+(4) if i < card supp (4),
(d) GCN(f(A), Leupp (a))(1) = 1 if i= czrd supp (4),
0 otherwise.

(e) GCN(A,A)(@) = ai A1 — a;+ for each i € CN with a; defined in
Section 5.
Proof. It is an immediate consequence of Th. 6.6 and definitions of
fi(A),gi(A4) and a;. ¢

Now we are going to present very specific property of the operator
GCN which holds exclusively for f = g = id (cf. Cor. 6.4). One can
check that for each A € GP(U) there exists such i that GCN(4, A)(i) 2
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> 0.5. It follows from Th. 6.8 that this holds for any other pair (f,g)
from F, too. However
Theorem 6.9. For each A € GP(U) there exists at most one cardinal
number 1 such that GCN(A4, A)(z) > 0.5 .
Proof. It suffices to observe that GCN(A, A)(i) > 0.5 onlyif t¢=
= 0.5 is an internal point of {t : card Ay = 7}. Such the cardinal
number is unique if exists. ¢

Using Th. 6.8 we notice that the property described in Th. 6.9
does not hold for pairs (f,g) # (id,id). Finally, we like to formulate
some decomposition theorem which will be useful in proving other facts.

Theorem 6.10.For each (f,g) € F and A € GP(U) we have
GCN(f(A4),9(4)) = GCN(E, g(4)) N GCN(f(4),U).

Proof. This is quite clear since from Th. 6.8 and Th. 6.6 it fol-
lows that for each ¢ € CN we get GCN(f(A),g9(A4))(r) = gi(A) A
A1~ fir(A),GCN(E, g(A)() = gi(4), and GCN(F(4),U)(i) =
=1— fir(4). &
So, we have for instance

Corollary 6.11. GCN(A4,A) = GCN(E,A)N GCN(A4,U),
GCN(14,,4) = GCN(E,A)N GCN(14,,U),GCN(14,, loupp (1)) =
= GCN(E, ]-supp (A)) N GCN(lAI,U) , and GCN(A, 1supp (A)) =
= GCN(E, 1supp (A)) N GCN(A, U)

-

. The generalized cardinal numbers

First of all, we like to formulate a property which is a key-stone
of the presented theory, namely
Theorem 7.1. For each (f,g9) € F and A,B € GP(U) the following

equivalence holds
GCN(f(4),9(A4)) = GCN(f(B),g(B)) uff A~y4 B.

Proof. Let us fix some arbitrary (f, ¢) from F and A, B from GP(U).
It is quite obvious that A ~f, B implies GCN(f(4),9(A4)) = GCN
(/(B),a(B)). So, assume GCN(f(4),¢(4)) = GCN(/(B),g(B)).
If f = E, then from Th. 6.8 we obtain g;(A) = ¢i(B) for each z € CN.
Obviously, f;+(A) = fi+(B) = 0 for all 7 from CN. Thus A ~;, B. If
f(-) = 1y, , then from Th. 6.8 we get again gi(4) = g:(B) for : >
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card A; = card B;. From the definitions of g;(D) and f;(D) it follows
however that g;(A) = gi(B) = 1 for 7+ < card 4;. On the other hand,
fi+(D) = 11if ¢ < card D, else f;+(D) = 0. So, fi+(A) = fi+(B) for
eachi € CN. Hence A ~j 4 B. Our thesis for ¢ = U and g(-) = Laypp (1)
can be proved in quite similar way. Finally, if f = g = id, it suffices
to show that a; = b; for each : € CN what is however again a simple
exercise and therefore omitted. <

Thus the values of the operator GCNN fulfill the axiomatic defi-
nition of cardinal numbers proposed by A.Tarski ([17], see also [14]).
These values will be just called generalized cardinal numbers (gen'’s)
and denoted by small Greek letters equipped with indexing pair f, g
emphasizing which approximating functions have been used. If
GCN(f(A),9(A)) = aj, € GP(CN), then we shall write Geardy,,
(A) = ay,, and say that the power of obj(A) equals ayf, with respect
to (f,g) € F. Obviously, then Geardy (A)(z) = ayq(i) = gi(A) A 1—
—fi+ (4).

Let us observe that the Tarski’s definition gives us in essence
two equivalent possibilities: the first one has been already described,
the second and in fact more proper variant is instead to consider
the HCH-object obj(GCN(f(A4),9(4))) in CN as a gen, ie. as a
tool describing the power of obj(A). Then we should rather write
Gceardy 4(A) = obj(ay,q); moreover, this would be in a way a generali-
zation of the idea of S.Gottwald from [7] who proposed to express the
power of a fuzzy set by means of a set composed of some cardinal num-
bers. However, obj(A) = obj(B) iff A = B. This in fact gives us free
hand to choose any of those two variants. We have chosen the first one
which is more convenient from the practical viewpoint. On the other
hand, operations and relations on HCH-objects resolve themselves any-
way to operations and relations on respective generalized characteristic
functions .

It follows from Th. 7.1 that Geardy 4(A) = Geardy 4 (B) iff A ~;

B. Moreover the following equivalence is quite obvious
afg = fqiff JA,B € GP(U) : Geards 4(A) = a5, &
& Geardyy(B) = ff,4 & A ~y5, B.
So, the equality of gen’s can be defined quite naturally by
afg = B iff afy(i) = By4(2) for each : € CN.
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If the pair (f,g) € F is fixed, we write simply Geard (A) = a. From
Th. 6.10 we get at once

Geardy,4(A) = Geardg,¢(A) N Geard y(A)
Geardy,4(A) = Geardg,ia(g(A)) N Geard;q,u(f(A)).

and

Hence for instance
Geardiq ia(A) = Geardg ;4(4) N Gcardid’U(A),k
Geardy, ,ia(A) = Geardg,ja(A) N Geardia,p(1 4, ),
Geardy ) 1,5 () (4) = Geardg,ia(Tsupp (ay) N Geardig,u(14,),
Gcardid,lsupp (A)(A) = Geardg ig(1supp (4)) N Geardiq,y(A),
Geardp,i,,,, (., (4) = Geardg,ia(1supp (4)) N Geardig v (E).

Obviously, wusing Th. 6.8 one can automatically express
Geardy,g(A4)(2) for the five basic groups of pairs (f,g) € F. Let

GCNy,y := {a € GP(CN) : Geard 4(D) = « for some D € GP(U)}.

Theorem 7.2. (a) For each (f,g) € F all the elements a € GCNy,
are convex, i.e. a(j) > a(i) A a(k) fori < j <k.

(b) If f = E(f(-) = 1(,,, resp. ), then each a € GCNy, 4 i3 antitonic
(is antitonic on its support, resp.).For g = U(g(:) = Laupp ()> Tesp.)
each a € GCNy,; is 1sotonic (is isotonic on its support, resp.) .

(c) If (f,9) # (id,id), then each element a € GCNy , 1s normal, i.e.
there exists i € CN such that a(i) = 1.

Proof. All the results are simple corollaries of Th. 6.8. &

It is quite obvious that a ¢ GCN f,¢ 1s in general case nonmono-
tonic for f = g = id (see however the formula preceding Th. 6.8). Also,
it is not normal in general but, on the other hand, fulfills an interesting
property described by Th. 6.9. Cleary, if « is normal for f = g =1id,
then its support has exactly one element.

If (f,9) # (id,id), then obviously f(D) C 1g(p), for each D ¢
€ GP(U). So, in that case Geardy ,(D) is simultaneously equal to the
power of the twofold fuzzy set Q = (f(D), g(D)) (see [3]). Thus gen’s
constructed by means of pairs (f,g) # (id,id) refer not only to fuzzy
sets but also to twofold fuzzy sets (see Section 8.1).
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8. Examples and comments

8.1. Let n := card supp (A4), m := card A; and Geardy4(A4) = a for
some fixed (f,g) € F. As previously, a; := \/{t : card A; > ¢}. Using
Cor. 3.2 and Th. 6.8 one can present how looks the gen representing
the power of obj(A) with respect to eight main pairs of approximating
functions . Then we obtain the following formulae:

(Pair#1: f =g =1id)
ali) =a; N1 —a;+ =
(Pair#2: f = E, g =1id)

a(¢) = a;, where ap = 1 and a; =0 for ¢ > n.

(Pair#3: f(-) =1(),, g =id)

l—a;+ if 1<24,,4,
a; otherwise

1 if 1 = m,
a(t) =13 a; ifm<i<n,
0 otherwise.

(Pair#4: f = ld, g() - ]-supp ())

l—a;+ im<i<n,
a(i) = 1 if 1 = n,
0 otherwise.

(Pair#5: f=id, g =U)

0 if 1 < m,
a(i) =< 1—a+ ifm<i<n,
1 otherwise.

(Pair#6: f =E, g(-) = Loupp ()

a(i):{l if 1 < n,

0 otherwise.
(Pair#7: f(-) = 1(9,, 9(-) = Leupp (.))

afi) = {1 if 1 € betw (m,n),

0 otherwise.

(Pair#8:  f(-) =1(y,, g =U)
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. 0 ifi<m,
a(z)z{l

otherwise.
From Th. 6.3 we get at once some inclusions, for instance
ap1 Cags C aygr C aye,
a1 C apqg C aps C aps;
ay3 C apr Cogs, pq C agr C ape.

One can easily formulate different simple conditions for having ay; =
= ax;. Let us notice that if the pair (E,U) were an element of F, then
a(i) =1 for each z € CN.

Using Pair#2 we get gen’s defined for fuzzy sets by L.A.Zadeh
([28]; cf.[15] and see also [20] for a review of early approaches). Pair#3
generates instead gen’s of the type introduced by D.Dubois and H.Prade
([2]) also for fuzzy sets. Finally, (f,g) = (id,id) gives gen’s defined for
fuzzy sets by the author in [20]. Pair##7 generates gen’s identical to
the partial cardinal numbers of D.Klaua ([10]) and seems to be suitable
(like Pair#6 and #8) for rough sets (see [13],[23]). So, the presented
theory brings together a lot of early approaches to gen’s although they
have been started from different motivations and have been proposed
for different kinds of HCH-objects such as fuzzy sets, twofold fuzzy sets,
partial sets and rough sets.

8.2. Let B € PS(U), q := card supp (B) and Geardy 4(B) = By, for
(f,9) € F. Then

1 iff;é.Eandg‘#U,
Brg = § liecn:i<q) if f=FE,
liieon:i>q) if g="U.

Hence Geardy  (B) = lpetw(card f(B)i,card g(B),) for each (f,g) € F.
These results suggest some interpretation of the values Geardy  (A)(7)
for A € GP(U), namely: if respectively f = E,g = U,f # E and
g # U, then one can consider Geardy, 4(A)(¢) to be the degree to which
obj(A) has at least, at most, exactly 7 elements, respectively. As a
second corollary we obtain the following formulae (k := card U):

1{0} 1{k}iff7'éEandg$§U,
Geards  (E)=14 140y and Geardy(U)=< lon if f=E,
len Liky ifg="U.
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8.3. Let U =R, ie. CN = {i:i << }. Moreover, let

1—-z f 0<2z<1 B
Alz) = { 0 otherwise, B(z) = 0.8A(z),

0 otherwise,

C(m)={1—1/x if £=2,3,4,...,

. fo=0.1 r012 1f§z37274
0.9 ifz=2 0.3 ifz=6
03 if4<z<5 0.6 ifq;:8
O otherwise, L 0 otherwise.

Further, let Geardy (A) = ay 4, Geardy (B) = B4, Geards  (C) =
= v¢,4 , Geardy (D) = 654 , and Geardsy4(S) = o54. So, we have
a; =1foreachi € CN,b;=1fori=0and b; =0.8if ¢ € betw (1,$),
ci=1ifi1 <Ny and ¢; =0 for: =<¢, and

(1 if 1=0,1,2,3
1 ifi=0,1,2 0.9 . ifi=4
o _)o9 if i =3 06 ifi=>5
Yo if 1 =4 i=30.3 if i =6
0.3 ifi€ betw (5,), 0.2 ifi="7
| l 0 ifie betw (8,¢).

Then using the notational rule () from Section 1 we get

ag1 = ((0) || 0,1), By1 =((0.2) || 0.2,0.8), v41 = ((0) || 1,0),
641 = (0,0,0.1,0.3,0.7, (0.3) || 0.3,0.3),

o1 = (0,0,0,0.1,0.4,0.6,0.3,0.2,(0) || 0,0),

aga = ((1) ]| 1,1), By2 = (1,(0.8) || 0.8,0.8), va2 = ((1) || 1,0),
b2 =(1,1,1,0.9,0.7,(0.3) || 0.3,0.3),

ou2 = (1,1,1,1,0.9,0.6,0.3,0.2, (0) || 0,0),

ags = (0,(1) || 1,1), Bys = (1,(0.8) || 0.8,0.8), vxs = ((1) || 1,0),
645 = (0,0,1,0.9,0.7,(0.3) || 0.3,0.3),

ous = (0,0,0,1,0.9,0.6,0.3,0.2, (0) || 0,0),

ags = ((0) [ 0,1), Bya = ((0.2) | 0.2,1), va4 = ((0) || 1,0),

644 = (0,0,0.1,0.3,(0.7) || 0.7, 1),

o4 = (0,0,0,0.1,0.4,0.7,0.8,1,(0) || 0,0),
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ags = ((0) [| 0,1), Bys = ((0.2) | 0.2,1), vgs = ((0) || 1,1),
§us = (0,0,0.1,0.3,(0.7) || 0.7,1),
ous = (0,0,0,0.1,0.4,0.7,0.8,(1) || 1, 1),

age = ((1) | 1,1), Bas = ((1) | 1,1), y#s = (1) | 1,0),
6#6 = ((1) ” 171)70#6 = (1717171a17131’17(0) ” O’O)a

agr = (0,(1) | 1,1), Byr =((1) | 1,1), vgr = ((1) || 1,0),
6#7 = (070’ (1) || 1, 1)? OH1 = (070707 1,1,1,1,1, (0) ” 030),

ags = (0,(1) | 1,1), Bys =((1) | 1,1), vgs = ((1) | 1,1),
6#8 = (0703(1) ” 1a1)’ 048 = (070’01(1) ” 1v1)')

Worth noticing is that for instance ag; € PS(CN) although A ¢
¢ PS(U). This is because A has continuum of values which lie as
near to 1 as one likes.

9. Further properties of the generalized cardinal
numbers

One of the most fundamental requirements concerning gen’s is the
coincidence with cardinal numbers if we deal with HCH-objects being
sets. This is fulfilled. ,

Theorem 9.1. For cach (f,g) € F there ezists a bijection Uy, :
CN — PS(CN) such that Geardy,¢(1p) = ¥y,,(q) (g := card D), i.e.
respective diagram is commutative.

Proof. It suffices to use Ex. 8.2 and to define

14 if f#£Fandg#U,
‘I’f,y(i) = 1{j€CN: j<i} _ if f=FE,
lijeen: j>i) ifg=U ¢

Corollary 9.2. An immediate consequence of Ex. 8.2 is also that
for each pair (f,g) € Fif B € PS(U) and Geards 4(B) = f;,,, then
Bs,g € PS(CN). It is quite clear that the property Geard; ,(A) = a €
PS(CN) holds for each A € GP(U) iff both f and ¢ are functions to
PSU).
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10. Finite HCH-objects

Sets are divided into two disjoint classes: finite sets and infinite
ones. Some properties of powers and cardinal numbers refer either to
finite or to infinite sets. The others refer instead to all the sets and
those are in fact real properties of powers and cardinals, for instance
the monotonicity A C B = card A < card B. Let us try to extend the
notions of finiteness and infiniteness to HCH-objects.

As we pointed out, the power of an HCH-object depends in general
on the choice of (f,g) € F. However, it seems to be reasonable to accept
the following postulates:

(a ) The finiteness/infiniteness of an HCH-object does not depend on
(f,9) e F.

(b1) An HCH-object of power less than or equal to power of a finite
HCH-object has to be finite, too.

(b2) An HCH-object of power greater than or equal to power of an
infinite HCH-object has to be infinite, too.

On the other hand, if we like to define a relation =< ordering gen’s
and powers of HCH-objects , then < should be monotonic, i.e. Y(f,g) €
F : obj(A) C obj(B) = Geardys 4(A) =% Geardy ¢(B); such a relation is
defined and investigated in [24]. So, HCH-objects with finite supports
must be considered to be finite ones. Really, if obj(A) has a finite
support, then obj(1lsupp (4)) is a finite set and obj(A4) C obj(leupp (4))-
Thus the monotonicity condition and (bl) imply that obj(A) is finite.
Therefore the problem how to define finite HCH-objects resolves itself
to the following question: which HCH-objects besides those with finite
supports (if any) should be considered to be finite. To answer it let us
recall the Dedekind’s definition of an infinite set: A4 is infinite iff A is
equipotent to its proper subset. This definition seems to be suitable for
extending it to HCH-objects because it operates only with the notions
of equipotency and proper containment and does not go into the nature
of the notion of a set. So, let us test the following tentative definition:
obj(A) is infinite iff it is equipotent with respect to any (f,g) € F to an
HCH-object obj(A*) properly contained in obj(A). Now the problem
is how to define the proper containment (denoted here by CC) of two
HCH-objects. Let us consider two variants of definitions:

(v1) obj(A*) CC obj(A) iff A* C A&3z c U : A*(z) < A(x) .
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But then if we put e.g. f = E and g(-) = Lsypp () , even an HCH-object
supported by one element would be infinite. So, we reject this variant.

(v2) obj(4*) CC obj(A) iff f(A*) C f(A)&g(A*) C g(A)&3Iz € U :
F(A")(z) < f(A)(2) | 9(4%)(z) < g(A)(z).

Let us consider then an example with U := {2,3,4,...}, A(¢) := 1/1,
f(-) = 1¢y,, g = id. So, Geardy,,(A)(1) = 1/i for ¢ > 0. obj(A) is not
equipotent to any obj(A*) CC obj(A). Thus obj(A) is finite although
its support is infinite. But putting f = F, ¢(-) = lsupp () we however
get that obj(A) is infinite what contradicts (a).

So, we cannot use simultaneously (a) and the extended Dedekind’s
definition. Moreover, using the last example one can point out that if we
like to consider some HCH-object with infinite support to be finite and
even if we apply another definition of the infiniteness, then that HCH-
object will be always infinite with respect to f = E and ¢g(+) = Lsupp ()
So, either we reject (a) or we consider an HCH-object to be finite iff its
support is finite. We choose the second possibility; clearly, HCH-objects
which are not finite will be called infinite. This definition is convenient
and, moreover, it appears that just the transition from finite to infi-
nite supports causes the same change of properties of gen’s and powers
for HCH-objects as the change of properties of cardinal numbers and
powers of sets caused by a transition from sets nonequipotent to their
proper subsets to sets equipotent to such subsets. The gcn’s related
to finite (infinite, resp.) HCH-objects will be called finite (transfinite,
resp.) gen'’s.

11. Final remarks

In this paper our attention has been focused on the construction
and basic properties of powers and gen’s for HCH-objects. It appears
that a lot of these properties can be enhanced or even quite new prop-
erties can be formulated if we restrict ourselves to finite HCH-objects
(see [25] for details) which seem to be important from the viewpoint of
applications. However the aim of this presentation was to emphasize
some general properties, i.e. properties which are independent on the
powers of supports and on the choice of (f,g) € F.
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Another two basic subjects have to be discussed: order and oper-

ations. Detailed solutions of these problems are given in [24,25]. For
instance, it appears that gen’s form a commutative semiring.
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