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7. Extending a family of merotopies in a semi-
uniform space

A. WITHOUT SEPARATION AXIOMS

7.1. A family of merotopies in a semi-uniform space has a coarsest and
a finest extension; we are going to construct both.
Notation. For an entourage U, let

C(U)={C:C* U}, cl(U)z{{x,y}:ny,yU:c}.

Recall from 0.4 that U(c) = |JC? for a cover c; this notation will be
Céec
used for arbitrary collections ¢ C expX. ¢

Lemma.

a) c®(U) and c}(U) are covers. U(c) is an entourage iff c is a cover.

b) H(UNV) =k U)NHKV) (k=1,2).

c) U(KU) =UnU' (k=1,2).

d) For a cover ¢, c*(U(c)) refines ¢, and ¢ C *(U(c)).

e) If ¢ is a topology on X, and U is symmetric and open then

U(int.c®(U)) =U.

Proof. e) U(int.c’(U)) c U(c®(U)) = U. Conversely, if zUy  then
VxW CU for some c-open neighbourhoods V of z and W of .
We may assume V2 C U, W? C U, since zUz, yUy; W x V C U by
the symmetry. Thus C = VUW € ®(U), and, C being c-open,
C € int.c®(U), (z,y) € C? C U(int(c*(T)). ¢
Remark. Saying that c is finer than d instead of ¢ refines d (which is,
of course, in conflict with established terminology), the content of this
trivial lemma can be interpreted as follows: any symmetric entourage
U can be induced by coverings; c®(U) is the coarsest and ¢! (U) the
finest one (more precisely, one of the coarsest, respectively finest ones);
if U is open then intc?(U) is the coarsest open cover inducing U.

7.2 Recall the following notations:
¢ ={Cl:Cica} (1€l cieMy),
CP=CiUX], X]=X\X;

sU denotes the collection of the symmetric elements of /.
Definition. For a family of merotopies in a semi-uniform space,
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a) Let M° be the merotopy for which ? (¢ €I, ;€ M;) and
c®(U) (U € U) form a subbase B°.
b) Let M! consist of those covers ¢ of X for which

(1) clX; eM; (i€l
(2) U(c) e U.

The more precise notations ng/l, M;) = M*(U,{M; : 1 € IT}) will
be used when necessary; M*(U) = M*(U,0) (k=0,1). &

The elements of BY are covers, so it is indeed a subbase for a
merotopy. It does not change B? if U is replaced by s in the definition
(since c°(U) depends only on U N U™'). Replacing U/ and each M; by
subbases, we still obtain a subbase for M’ (Lemma 7.1 b) and c?(N)d? =
= (ci(N)d;)°). If I = 0 then B® = {°(U) : U € si4} is a base, not just
a subbase (Lemma 7.1 b)). M! is clearly a merotopy. The next Lemma
gives an alternative description of M'; in particular, if I = ( then
B' = {c}(U) : U € sU} is a base for M.

Lemma The covers of the form
(3) Cl(U)UUCi (UESU,C,‘EM,’ (iEI))

1€l
make up o base B! for M!,
Proof. If c is as in (3) then c|X; D ¢;, thus (1) holds; U(c) D
D U(c!(U)) = U, thus (2) holds, too. This means that B! ¢ M.
Conversely, any ¢ € M' is refined by (3) taken with ¢; = ¢|M; and
U=U(c). ¢
Theorem. Any family of merotopies in a semi-uniform space has ez-
tensions; M® is the coarsest and M the finest one.
Proof. 1° M° is coarser than M*. It is enough to show that B® ¢ M!,
i.e. that (1) and (2) hold for the covers ¢ and ¢®(U). It follows from the
accordance that ¢? satisfies (1) (this fact was already used in the proof
of Theorem 3.1). (2) is satisfied, too, since the compatibility implies
that U(c;) = U|X; with some U € U, and from

Cf* = CFU (Ci x XT)U(X] x C))UX]?

we obtain U(c?) = U|X; U (X% \ X?), so that U C U(CY?). ®(U)|X; =
= c®(U|X;) is clear from the definition, thus (1) holds for c®(U) (since,
assuming U € sU, UlX; = U(c;) for some ¢; € M;, which refines
c®(U|X;) by Lemma 7.1 d)); (2) follows from Lemma 7.1 c).
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2° M° and M! are compatible. According to 1°, it is enough to check
that (M') C U C U(M®). The first inclusion is evident from (2). If
U € sU then ®(U) € M°, so U(c®(U)) € U(M®); hence U € M° by
Lemma 7.1 c).

3° M and M! are extensions. By 1° and 2° , we have only to see that
M'|X; € M; C Mg|X;. The first inclusion is clear from (1), the second
one from ¢J|X; = c;.

4° M° is coarsest, M; is finest. Let M be an extension. Any ¢ € M
satisfies (1) and (2) by the definition of an extension, thus M C M.
For c; € M;, there is a ¢ € M with ¢|X; = ¢; ; c refines ¢!, thus ¢ € M.
Given a U € sl , there is a ¢ € M with U = U(c) (see 0.4), and then
c®(U) D ¢ by Lemma 7.1 d), thus ¢®(U) € M, too. Hence B C M,
implying M® ¢ M. &

B. RIESZ MEROTOPIES IN A SEMI-UNIFORM SPACE

7.3 If a family of merotopies in a semi-uniform space has a Riesz
extension then the semi-uniformity is Riesz, and the trace filters are
Cauchy (with respect to the merotopies). The merotopies are also Riesz,
but this is included in the statement that the trace filters are Cauchy.
The above conditions are sufficient, too.

Definition. For a family of merotopies in a semi-uniform space, let

M% = {c € M': intcis a cover of X}. ¢

(Compare with Definition 3.2.)
Theorem. A family of merotopies in a Riesz semi-uniform space has
a Riesz eztension iff the trace filters are Cauchy; if so then M° is the
coarsest and My the finest Riesz extension.
Proof. The necessity is obvious. Assume conversely that the trace
filters are Cauchy. Now M is Riesz, since int c is a cover for each
¢ € BY. Indeed, intc! is a cover by the Cauchy property, while if U € U
then A C int U implies that for any z € X, there is a C € v(z) with
C? C U, and it follows from C € ¢®(U) that int c°(U)is a cover, too.

M? is the coarsest Riesz extension by Theorem 7.2. If M is a Riesz
extension then M C M' (Theorem 7.2), therefore M C M%. In partic-
ular, M ¢ ML ; this and the evident inclusion ML ¢ M! imply that
M3 is an extension (again Theorem 7.2). It follows from the definition
that, being compatible, M} is Riesz.
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Remark. Given a semi-uniformity &/ and a U € sl{, there is in general
no finest one (in the sense of Remark 7.1) among the covers ¢ inducing
U for which int ¢ is cover: take the Euclidean uniformity on R , and

U =R? ; observe that U = U(c(¢)) (¢ > 0) where
c(e) = {lz,z +e[U{y} : 7,y €R}.

So we cannot hope for a characterization of M%z similar to Lemma 7.2.

C. LODATO MEROTOPIES IN A SEMI-UNIFORM SPACE

7.4 If a family of merotopies in a semi-uniform space has a Lodato
extension then the semi-uniformity and the merotopies are Lodato, the
trace filters are Cauchy, and 3.6 (1) holds. These conditions are not
sufficient, see Examples 7.12.
Definition. For a family of Lodato merotopies in a Lodato semi-
uniform space,

a) Let M}, = {c € M! :int c € M*}.

b) If the trace filters are Cauchy then let M} be the merotopy for
which {int ¢ : c € M°} is a base. ¢

The open covers in M' form a base for M}. In b), int c is a cover,
because the trace filters are Cauchy and U is Lodato; these covers form
a base for a merotopy, since int ¢ (N) int d = int (c(N)d). The following
covers make up a subbase B} for MY :

intc! (Gel, c;eMy, ¢ is ¢ci-open);
int co(U) (U € sU,U is open).
Observe that
(1) intc®(U)={C:C*CU, C isopen}.

Remark. There is a simple reason for the similarity with Definitions
3.4, 3.5 and 5.14: If p is a collection of compatible merotopies in a topo-
logical space such that M ¢ M’ € M” and M,M” € u imply M’ € g,
there is a coarsest M° € 1 (a finest M' € p), and there exists a Lodato
merotopy in u then M} (M}) defined as above is the coarsest (finest)
Lodato merotopy in . (The proofis straightforward.) Analogous state-
ments hold for contiguities and semi-uniformities.

Lemma. A family of Lodato merotopies in a Lodato semi-uniform
space has a Lodato extension iff the trace filters are Cauchy and M% C
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C ML ; if so then MY is the coarsest and M the finest Lodato extension.
Proof. The above remark applied to the collection of all extensions
(Theorem 7.2) gives that if there are Lodato extensions then MY is the
coarsest and M1 the finest one; therefore M} C M}. Assume conversely
that the trace filters are Cauchy and M} C M}. Then Theorem 7.2 and
the trivial inclusions M® ¢ MY and M} c M! yield that M} and M}
are extensions. Being compatible, they are clearly Lodato.

7.5 Remark. Lemma 7.4 remains valid if M} C M7 is replaced by
M} ¢ M! (or M® € M}). The proof is the same.

7.6 Lemma. A family of merotopies in a semi-uniform space has a
Lodato eztension iff
(i) the semi-uniformity and the merotopies are Lodato;
(i) Ulint ) e (iel,c;eM;);

(iii) (int c?)|Xj eM; (3,5 €l,cieMy);
(iv) (int (O)|X; eM; (U e sU,iel).
Remarks. a) (ii) implies that each int c? is a cover, i.e. that the trace
filters are Cauchy.

b) In comparison with Lemmas 5.17 and 6.8, Condition (iv) is
completely new; we shall later see that it is not superfluous.
Proof. 1° Necessity. (i) is clear. (iii) follows from Theorem 3.6. If
there are Lodato extensions then M(}J is one of them by Lemma 7.4,
int ¢ € M} by definition, thus, M} being compatible, (ii) holds; (iv)
follows from MY |X; = M; and int °(U) € M.

2° Sufficiency. The assumptions of Definition 7.4 are fulfilled, so,
according to Remark 7.5, it is enough to check that M} c M!, i.e.
that BY C M!. This means four conditions, from which three are just
(i), (iii) and (iv), and the fourth, namely U(int °(U)) € U , holds by
Lemma 7.1 €).
Corollary. A single Lodato merotopy Mg in a Lodato semi-uniform
space has a Lodato extension iff U(intcd) € U for each co-open co € My,
and (int c®(U))|Xo € Mg for each open U € sU. &

The first assumption cannot be replaced by the Cauchy property

of the trace filters, and the second one cannot be dropped either, see
Examples 7.12.

7.7 Corollary. Any Lodato semi-uniformityU can be induced by Lodato
merotopies; MY (U) is the coarsest and ML (U) the finest one. &
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BY (con51s’c1ng in this special case of the covers given in 7.4 (1))
is a base for MY ().

It can happen that MY (&) # M®(U) for a Lodato semi-uniformity
U. (In a proximity space, I # @ was needed for an analogous example,
see Lemma 5.15 and Example 5.17.)
Example. On X =R, take the semi-uniformity ¥ for which {U(k) :
k € N} is a base, where

Uk)={(z,y): lz—y| <1/k}UU{Qmn : m,n >k},

Qn =] +—[x] +—
mn =M m—I—n’m m-+n n m—I—n’n m—l—n'

c is the Euclidean topology, thus U(k) is open, and U is Lodato. We
claim that

c =int "(u(1)) € MY (LN\M°(U1).

Indeed, if ¢ belonged to M®(I) then there were a k € N with d =
= c’(U(k)) refining c. This is, however, impossible since A = {n € N :
n >k} € d, but there is no open set G D 4 such that G2 C U(1). ¢
7.8 M7 (U), ML () and My (i) can be different:

Example. Take the Euclidean uniformity & on X =R, and let f(z) =
=z + (1+|z|)"!. Then

(1) d = {lz, f(2)[ U]y, f()]: =,y € X} € ML) \ML ),
{{e,y} s 2,y € X} U {Jz, f(2)[: 2 € X} € MRUO)\MLU). &

7.9 Condition (iii) is not superfluous in Lemma 7.6:
Example. Let U be the Euclidean uniformity on x = R x [0,1[, X =
=R x {0}, X1 = X7, M; = ML(U)|X;. 7.5 (ii) and (iv) are satisfied,
since Mp and M; separately have extensions. But (iii) fails for i = 1,
j=0,

C1 = {DX]O, 1[ De d} € M1
with d from 7.8 (1). ¢

7.10 Corollary. A family of merotopies in o Lodato semi-uniform
space has a Lodato extension iff {M;,M;} has a Lodato eztension for
any t,7 € . $

7.11 Corollary. A family of merotopies in o Lodato semi-uniform
space has a Lodato extension iff it has a Lodato extension in (X,c), and

each M; has a Lodato extension in (X,U).
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Proof. Theorem 3.6 and Lemma 7.6.

7.12 Theorem. A family of Lodato merotopies given on open-closed
subsets in a Lodato semi-uniform space has Lodato extensions.

Proof. By Corollaries 3.8 and 7.11 it is enough to check that each M;
separately has a Lodato extension, i.e. that

(1) U(intc?) €U (c; €M; is c;-open),
(2) (int C(U))|X* e M; (U € sd is open).

X; being closed, we have int ¢{ = ¢%; U(c?) € U , because ¢ € M°,
which is compatible. Thus (1) holds indeed. On the other hand, the
openness of X; implies that

(int co(U))|X; = int; (°(U)|X:)

(see 7.4 (1)). Now c°(U)|X; € M;, since c®(U) belongs to the extension
M. Thus, M; being Lodato, (2) is satisfied, too. ¢

It is not enough to assume that the sets are open and the trace
filters Cauchy, or that the sets are closed. The next examples (with |I| =
= 1) have the additional property that there exists a Lodato extension
in (X, 6(U)).
Examples. a) With X | X, and My from Example 5.20, My is com-
patible with U|X,, where U is the Euclidean uniformity on X. U and
Mg are Lodato, and Xg is open. The trace filters are Cauchy; in fact,
Mo has a Lodato extension in (X, §(U)) (see 5.20 and Corollary 5.17).
The second condition of Corollary 7.6 holds (because Xy is open), but
the first one fails for ¢o(1): no set of the form (] —€,e[x{0})* Nz is
contained by U(int ¢o(1)°).

b) Let X and Y be as in Example 7.7, Xo = N, My = M ()
Uy = U|Xp. Now U and My are Lodato (the latter because ¢q is dis-
crete), and Xy is closed. My has a Lodato extension in (X, §(U/)) (The-
orem 5.22), but it does not have one in (X,U): (int c®(U(1)))|Xo & Mo,

since this cover consists of finite sets, while My is contigual. ¢



Simultaneous exiensions of prozimities, semi-uniformaties, ... 65

8. Extending a family of semi-uniformities in a
proximity space

A. WITHOUT SEPARATION AXIOMS

8.1 Results are, and proofs could be, analogous to those for merotopies
in a proximity space (§ 5). The folljowing simple observation will save
us from doing all over again: ‘

Lemma. For a family of semi-uniformities in a prozimily space,
{M®(U;) : i € I} is a family of merotopies in the same space. The
trace filters are U;-Cauchy iff they are M°(U;)-Cauchy.

Proof. The accordance follows from C®(U|X;) = °(U)|X;. ¢

8.2 Definition. For a family of merotopies in a proximity space, let:
U° = UM (6, M (U:))). ¢
The following entourages constitute a subbase B for U°:
U =U; U(X\XH) =U(((U)Y (1€ ,U; els);
Usp=A" UB?=U(cap) (ASB).

Theorem. A family of semi-uniformities in a prozimity space can
always be extended; U° is the coarsest extension.
Proof. It follows from Theorem 5.4 and Lemma 8.1 that U° is an
extension. Let U be another extension; then M°(I) is an extension
of the merotopies M®(Z;), thus M® ¢ M°(Uf) (Theorem 5.4), implying
U =UM®) cUM ) =U. &

It follows from Example 5.3 that there is in general no finest com-
patible (Riesz/Lodato) semi-uniformity in a (Riesz/Lodato) proximity
space.

B. RIESZ SEMI-UNIFORMITIES IN A PROXIMITY SPACE

8.3 Theorem. A family of semi-uniformities in a Riesz prozimity
space has a Riesz extension iff the trace filters are Cauchy; if so then
U is the coarsest Riesz extension.

Proof. If the conditions are fulfilled then 2° is Riesz by Lemma 8.1
and Theorem 5.9. $
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C. LODATO SEMI-UNIFORMITIES IN A PROXIMITY SPACE

8.4 Although the results are analogous to those for Lodato merotopies,
we cannot keep on applying the results of § 5, since M°(4;) is in general
not Lodato (Example 7.7), while it can occur that {M} () : i € I} is
not a family of merotopies (it is not accordant):

Example. With X and U from Example 7.7, let § = 6(21), Xo =N,
X1 = X, Ui = U|X;. Now {Up,Ur} is a family of semi-uniformities
having a Lodato extension (namely U), but MY () and MY (1) are
not accordant: if they were then M? 1.(U) would be a Lodato extension
of M} (o), contradicting Example 7.12 b). ¢

Remark. An open filter (in particular, a trace filter) is U;-Cauchy iff
it is M (¢4;)-Cauchy. This observation makes it possible to apply the
results of § 5 C in the special case Il < 1.

8.5 Definition. The entourage U is a §-entourage if A§ B implies that
there-are z € A, y € B with zUy.

U is a 6-entourage iff ASU[A]" (4 C X).
Lemma. A cover ¢ is a §-cover iff U(c) is a é-entourage.

8.6 Lemma. For a semi-uniformity U on X, §(U) is coarser than & iff
every U € U is a é-entourage iff U has a base consisting of 6-entou-
rages.

8.7 Lemma. IfU and V are é-entourages and V = U(f) with a finite
cover f then UNV s a 6-entourage.

Proof. Take a cover c such that UNU~! = U(c), and use Lemmas 5.2
and 8.5. ¢

8.8 Definition. For a family of Lodato semi-uniformities in a Lodato
proximity space with Cauchy trace filters, let {Int U : U € B} be a
subbase for ] (with B from 8.2). ¢

The Cauchy property implies that Int U is indeed an entourage.
Copying the argument from 5.14 to 5.17 and 5. 22, we obtain:
Lemma. A family of semi-uniformities in a prozimity space has a
Lodato eztension iff

(i) the prozimity and the semi-uniformities are Lodato;

(ii) N Int U? is a &-entourage whenever § £ F C I is finite, and
ieF

Uiel; (1€ F),
(i) (Int UD)|X; € U; (3,5 € I,U; € Uy).
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If these conditions are satisfied then U} is the coarsest Lodato

extension.
n

(When showing that (| IntUJN () Ua,,B, is a 6-entourage, apply
iEF k=1

Lemma 8.7 n times.)
Corollary. A single Lodato semi-uniformity Uy in a Lodato prozimity
space has a Lodato eztension iff Int UY is a §-entourage for each
(co X cg-open) U € Uy. &
Theorem. A family of Lodato semi-uniformities given on closed sub-
sets in a Lodato prozimity space has Lodato extensions; U® = U? is the
coarsest one.

8.9 The condition in Corollary 8.8 cannot be replaced by the weaker
assumption that the trace filters are Cauchy:
Examples. a) Let

Xo={(1/k,1/n): k,neN,k <n}, X = XoU{(1/k,0): k € N}.

With the Euclidean proximity é on X, X is open. For z = (z',z"),y =
=(y',y"), z,y € X and € > 0, define

(1) aUs(ely i o' — '] <&, [ — "] <&, (&' £y = 2" £y"),

and let {Up(e) : € > 0} be a base for Uy. Each Up(e) is an open -
-entourage, and U, is clearly finer than the Euclidean semi-uniformity
on Xy, thus Uy is a compatible Lodato semi-uniformity. The trace filters
are Cauchy, but Int Up(1)° is not a é-entourage (let A and B be disjoint
infinite subsets of X]).

b) Let everything be as above, but replace the last condition in
(1) by
(:El — -'I:”, yl # yll = mll < yll), (.’E’ # xll, yl — yll :> yll < 1:”).
Now the sets A = X[ and B = {(1/n,1/n) : n € N} show that
Int Up(1)? is not a é-entourage. ¢
Similarly to 5.18 the condition of Corollary 8.8 can be split into

two parts. The above examples show that neither of these parts is
sufficient in itself.

8.10 Condition (iii) cannot be dropped from Lemma 8.8, see Example
2.10; (ii) cannot be replaced by the weaker assumption that each Int U}
is a §-entourage:
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Example. Taking X, X, X; and § from Example 5.20, let {Ui(e) :
e > 0} be a base for U; on X;, where, with z = (z',z") and y = (v/',y"),

n

U (e)y iff |2’ —y'| <¢, |a" —y"| <¢,
(z",y" <e,a' <0<y = —z' <y'),
("¢ <e,y <0<z’ = —y <1'),
zUo(e)y iff (=2', —z")Ur(e)(—y', —y")
The reasoning from 5.20 can be easily adapted. ¢

9, Extending a family of merotopies in a contiguity
space

A. WITHOUT SEPARATION AXIOMS

9.1 In the problems investigated so far, a family of structures always
had an extension if no separation property was required; this is not the
case for merotopies in a contiguity space. It will be easier to describe
the counterexample after some definitions and lemmas.
Definition. In a contiguity space (X,T'),
‘a) A cover c of X is a I'-cover if any finite cover refined by c

belongs to I'.

b) (See e.g. [4].) A collection n C expX is I'-near if it is finite and
nm={N":Nen}¢gIl. ¢

A finite cover is a I'-cover iff it belongs to I". It follows easily from
the axioms that Co2 could be replaced by

Co?2". if n is I'-near and each N € n is the union of a finite collection
a(N) then there are A(N) € a(N) such that {A(N): N € n} is

I'-near.

(Compare with P5 in 0.2, or rather with its more complicated form
that can be obtained by induction. Observe that A §(T") B iff {4, B} is

I'-near.)

Lemma. A cover ¢ 1s a ['-cover iff cNsecn # @ for each I'-near
collection n.

Proof. c is not a I'-cover iff it refines some finite f ¢ T, i.e. iff there
is a [-near collection n such that each C' € c is the subset of some
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NTen™ $

Compare this lemma with the definition of a é-cover (5.1). By
the observation made before the lemma, any I'-cover is a 6(T')-cover.
Conversely, any §-cover is a I''(§)-cover (indeed, if ¢ is a §-cover then

any finite cover refined by c is a §-cover, too, so it belongs to I''(§) by
definition).

9.2 Lemma. For a merotopy M on X, I'(M) is coarser than I iff each
element of M 18 a T'-cover iff M has a base consisting of I'-covers.

9.3 Lemma. Ifcis a I'-cover and f € T" then C(N)f is a I'-cover.
Proof. Given a I'-near collection n, we need C € ¢ and D € f such
that CN D € secn (Lemma 9.1). By Co”2, it can be assumed that each
element of n is contained by some element of the partition generated by
f. As fis a I'-cover, there is a D € f N sec n, implying Un C D. Taking
now a C € cNsecn, we have CN D €secn. $

For I'-covers ¢ and d, c(N)d is not necessarily a I'-cover: in Ex-
ample 5.2, take I' = T'1(§).

9.4 Definition. For a family of merotopies in a contiguity space, let
M® be the merotopy for which T and the covers c? (i € I,c; € M;) form
a subbase B.

I' could be replaced here by a subbase.

Lemma. A family of merotopies in a contiguity space has an extension

i
(1) () <? is a -cover whenever § # F C I is finite and c¢; € M;
ieF

(z € F); if so then MP is the coarsest eztension.
Remark. Compare (1) with (ii) of Lemma 5.17.
Proof. 1° Necessity. Let M be an extension. Then ¢; € M; = M| X,
thus ¢ € M, and (();cr)c! € M, hence it is a I-cover by Lemma 9.2.
2° Sufficiency. We show that M® is an extension. Each element of
M® is refined by a cover of the form ¢ = ((;cr <) (N) f, where ¢; € M;
and f € T. It follows from (1) and Lemma 9.3 that ¢ is a I'-cover;
hence I'(M?) C T by Lemma 9.2. On the other hand, T' ¢ B ¢ M°
implies I' ¢ T(M®). As M°|X; D M; is evident, we have only to check
that MOIXi C M;, ie. that B|X; C M;. It was already used in other
proofs that, in consequence of the accordance, c?IX,' eM;;iffel
then f|X; e I'; C My,
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3° M? is the coarsest extension. It is clear that any extension has
to contain B. ¢
Theorem. A family of merotopies given on disjoint subsets in a con-
tiguity space can always be extended. M° is the coarsest eztension.
Proof. To prove that (1) holds, it is enough to show (by Lemma 9.1)
that if n is I-near then there are C; € ¢; such that ;. C? € secn.
Take an index k ¢ I, and define Xy = (UzEFX) J = F{U k}. By
Co"2, we may assume that each N € n is the subset of some X; ()
with ](N) € J. For any i € F fixed, take a C; € c; that meets each
N € n lying in X;; this is possible because a subcollection of a I'-near
collection is I'-near, a Inear collection in X; is I';-near, and ¢; is a
I';-cover. Now (;cp C? =X U Uicr Ci meets each N € n. $

There is, in general, no finest compatible merotopy in a contiguity
space: replace § by I''(6) in Example 5.3 (if there existed a finest
merotopy compatible with I''(§) then it would be the finest one among
the merotopies compatible with §).

9.5 Disjointness is essential in Theorem 9.4. In fact, for n = 2,3,...,
there is a family of n merotopies in a contiguity space that has no
extension, although any subfamily of cardinality n — 1 has one:
Example. Let2§n€]N,Y3=]N><{s} (1 < s < 2n),

= {L.n), K ={n+1..2m} X = "V, X =
= Y U U kK Yk Take the prox1m1ty 6on X for which AéB iff either
AN B # { or both A and B are infinite. For i € I, let M%(§;) U {d;} be
a subbase for M; on X;, where

d; = {{(ms,s) :s€{i} UK} :m; €eN,mpq; < mn+i+1}U

U{ Urex Y} U {1},
and, in the definition of d,, ma,1; is identified with Mpt1. d; is a
b;-cover, thus §(M;) = §; by Lemmas 5.2 and 5.1 (because MO(&-) is
compatible with é;, and it has a base consisting of finite covers). If

,J€I, i#j then X;;= Usex Ys € di, thus
Mi| X5 = M°(6:)] X5 = (M°(6)]X:)| X5 = M°(6)] X35 = M°(6]X55)

(Lemma, 5.3 c)). Hence {M; : i € I} is a family of merotopies in (X,9).
Define I'; = I'(M;). Now {T'; : ¢ € I} is clearly a family of contiguities
in (X,6), so we can take the coarsest extension I' = T (Definition
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and Theorem 6.2). {M; : i € I} is a family of merotopies in (X,T).
We claim that y = {Y; : s € T U K} is I'-near but ¢ N secy = @ for
c=(Nice 1)dY ; according to Lemmas 9.1 and 9.4, this implies that the
family of merotopies cannot be extended.

To prove that y is I'-near, it is enough to check that f N secy = §
for each f € T' (because this condition does not hold for f = y"). fis
refined by a cover g(N)(;e;) fi with g € I'°(6) and f; € T; (see the
definition of I'?; it is enough to take only one f; from each I';, because
the operations (N) and ° commute). f; € M;, thus there is a finite
g; € MO(&), ie. ag; € I'°(6;), such that g;(N)d; refines f;. If A6B then
either A or B is finite, thus ¢ A,B contains a cofinite set; hence there is
a cofinite H € g (see the definition of I'%(§)). Similarly, there are sets
H; € g; cofinite in X;. Pick a v € N such that

H™UU; e (XG\H) c {1,...,v} x TUK).
Consider the sets

Di(p) ={(v+ 1L, 1)} U{(p+k,k): ke K} edy (u>v).

Dy(p) C Hy € gy, thus Dy(p) € g;(N)d;. As this cover refines the finite
f1, there are p > v, > p+4n and E; € f; such that D;(u), D1(n) C Es.
For 1 # 1 € I, define

Di={(v+1L9),(n+n+1)}U{(p+kk):n+1#EkeK}.

D; € d;, and also D; C H; € g;, thus D; € g;(N)d; ; hence D; C E;
with some F; € f;. Now

(v+1L,1),...,(v+Ln),(n+n+1Ln+1),(k+n+2,n+2),...,
(1 +2n,2n) € H 0 (Nies E} € g(ﬂ)(niel)f?-

So there is indeed an element of f meeting each Y.

On the other hand, c Nsecy = § is evident: any C € c is of the
form ﬂieI D? with suitable D; € d;; if D; = UkeK Y for some 7 then
CNY; =0;if D; =Y; for some ¢ then CNY};, = B(k € K); otherwise,
CNYr #0 (k € K) would lead to n inequalities that cannot hold at
the same time.

So we have proved that the merotopies cannot be extended. Any
n—1 have, however, an extension; for reasons of symmetry, it is enough
to show that this holds for My,...,M, 1, i.e. that, with I; denot-
ing {1,...,n = 1},b = (¢, )e? is a T-cover if ¢; € M; (Lemma
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9.4). ¢; is refined by f;(N)d; with some finite f; € M; ; therefore
(nielo)f?(n)(niefo)d? refines b. The covers fi and d{ are I'-covers by
Theorem and Lemma 9.4 (applied to M;). ] being finite, it belongs to
I', so we have only to prove that ([;¢;, )d? is a [-cover as well (Lemma
9.3). :

Let n be I'near; sets D; € d; have to be chosen such that
Nicr, Di € secn (Lemma 9.1). According to Co2! we may assume
that for N € n,N C Y,(n) with some s(N) € TUK . Consider
the set S = {s(N) : N € n} of indices. If SNIL = @ or
SNK =0 then D; = U Y (i € Iy), respectively D; =Y; (i €
€ Ip) will do. So we may assume that S N I # 0 # SN K . Define

" Zy=({Nen:NCY,} (s€b).

We claim that Z, # 0.

Indeed, let j = sif s € I, and j € SN I arbitrary if s € K; d(}
being a I'-cover, there is an E; € d; with E;-’ € secn. Clearly Y; #
# E; # Ureic Yx (as E; has to meet both sets). Hence Ej (so also E?)
meets Y, in a single point, which lies necessarily in Z,. We can deduce
from this that Z, is in fact infinite for s € SN K -

Assume it is finite, and apply Co2"with a(N) = {Zs,N\Z,} for
N C Y, and a(N) = {N} otherwise. A(N) = Z, is impossible, since
= {Z,,27} € T%8) C T, so it is a I' -cover; but Z] N A(N) =
=2' N Zy, = 0,and Z, N AM) = Z, N M=20for M CY;
Men,ie S N I (thereis such an M because S N Iy # 0); hence
c* N sec {A(N) : N € n} = 0, contradicting Lemma 9.1. Therefore
A(N) = N\Z, for N C Y, and the result of the foregoing paragraph,
applied to {A(N) : N € n} instead of n, yields (\{N\Z, : N € n,N C
Y.} # 0, a contradiction. _ '

Pick now points z, = (us,s) for s € SU K such that z, € Z, if
s € S,and p, < pet1 if 2n # s € K. The requires sets D; (i € Ip) can
be defined as follows: D; = gy Yiifi € S5 Di = {zs: s € {i} U K}
ifie S ¢ , '

B. RIESZ MEROTOPIES IN A CONTIGUITY SPACE

9.6 Lemma. A family of merotopies in a contiguity space has a Riesz
extension iff the trace filters are Cauchy, the contiguity is Riesz, and
9.4 (1) holds; if so then M° is the coarsest Riesz extension.
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Proof. The necessity of the conditions is clear. Conversely, if they are
fulfilled then M° is an extension by Lemma 9.4, and it is Riesz, since
int ¢ is a cover whenever ¢ € B (for ¢ € T because I' is Riesz, for ¢!
because the trace filters are Cauchy). &

Theorem. A family of merotopies given on disjoint subset in a Riesz
contiguity space has a Riesz extension iff the trace filters are Cauchy. $

C. LODATO MEROTOPIES IN A CONTIGUITY SPACE

9.7 If a family of merotopies in a contiguity space has a Lodato ex-
tension then the contiguity and the merotopies are Lodato, (ii) and
(iii) from Lemma 5.17 hold, as well as 9.4 (1). We shall see that these
conditions are sufficient if “I'-cover” is substituted for “é-cover” in (ii)
(and then 9.4 (1) is superfluous), but not otherwise.
Definition. For a family of Lodato merotopies in a Lodato contiguity
space with Cauchy trace filters, let {intc: c € B} be a subbase for M},
(with B from Definition 9.4). ¢

Cf. Definition 5.14. {intc : ¢ € M°} is a base for M}, ; the
following covers form a subbase By, for M} : the open elements of T
, and int c? (i € I,c; € My, c; is ¢;-open). M% is a Lodato merotopy
compatible with ¢ (just like in Lemma 5.14).
Lemma. A family of merotopies in a contiguity space has a Lodato
extension iff

(i) the contiguity and the merotopies are Lodato;
(1) (Niep)intc] s a T-cover whenever § # F C I 1s finite and c; €

eM; (ieF)
(i) (int )| X; € M; (4,7 € I,¢; € My).

If these conditions are satisfied then MY is the coarsest Lodato
eztension.
Remark. See Remarks 5.17.
Proof. 1° Necessity. (i) is clear. If M is a Lodato extension then
c? € M and int ¢ € M, implying ¢ = ((;cp)int ¢} € M, thusc is a
I'-cover by Lemma 9.2. (iii) follows from Theorem 3.6.

2° Sufficiency. We are going to show that MY is a Lodato extension
(the conditions in its definition are satisfied, since the Cauchy property
follows from (ii)). M? is an extension by Lemma 9.4 (as 9.4 (1) follows
from (ii)). M° ¢ M} |, so (M%) O T and M}|X; D M;. It follows
from (ii) and Lemma 9.3 that the elements of By are I'-covers; hence
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(M%) C T (Lemma 9.2). BL|X; C M; (for int ¢} by (iii), for the others
by the compatibility), thus M} |X; C M;, too. MY is clearly Lodato; it
is the coarsest one, see Remark 7.4. ¢

The following three weaker conditions together cannot stand in
lieu of (ii): 9.4 (1), 5.7 (ii), and each int ¢} is a I'-cover (Example a)
below). Condition (iii) cannot be dropped either (Example b)).
Examples. a) (A modification of Example 5.20.) Let T = {—1/n,1/n:
n € N}, X = Tx]-1,1[,Xo = Tx] —1,0[, X; = T'x]0,1[, and take
the Euclidean contiguity I' on X, i.e. the one induced by the Euclidean
merotopy (whose definition was given at the end of Example 3.8). De-
noting the Euclidean closure on R? by ¢*, nis I'-near iff [y, c*(NV) # @
(because X is bounded in R?). Let {ci(¢) : 0,6 < 1} be a base for M;

on X;, where
c1(e)={(p,p+e[x]g, g +e)NX1:(p € R, ¢ > 0)or (0¢]p, p+¢[, ¢=0)}U
U{Ci(k,n): k,n €N, k,n > 1/e} U {D1(e',e"): 0 < " <&’ <€},
Ci(k,n) = {-1/k,1/n}x]0,e[,
Dy(e',e") = ((] - €", 0[U]e", e[) x]0, ) N X7,

co(e) = {=C1: C1 € c1(€)}, —=C1 = {(—p,—9) : (p,q) € C1}.

M; is compatible, because if f is a finite cover refined by ci(¢) then
there is an F € f that contains infinitely many of the sets

(l—e/2,e/2[x]1/m,1/m +e[) N X; (m € N),

therefore Q(e) = (] — /2,¢/2[x]0,e[) N X; C E, i.e. the merotopy N;
with the base {c;(¢) U{Q(¢)} : 0 < & < 1} induces the same contiguity
as M; ; one can, however, easily see that N; is the Euclidean merotopy
on X;. ¢1(€) is ¢;-open, thus M; is Lodato. Arnalogously, My is com-
patible and Lodato, too. The merotopies are evidently accordant; (iii)
holds bacause int ¢;(e)°|X1-; = {X1-i}.

To check that ¢ = int c;(¢)? is a I'-cover, take a near collection n;
we need a C € cNsecn. Picka z € (yenc*(V). If z = (0,0) then
C = int D;(&',&")° will do with suitable ¢’ and €" ; the other cases are
trivial. co(€)? (N) c1(€)® is a I'-cover by Lemma and Theorem 9.4. The
sets C1(k,n) and —Ci(n, k) guarantee that int co(€)? (N) int ¢;1(¢)° is a
8-cover. Thus all the three weaker versions of (ii) are fulfilled.
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Nevertheless, (ii) fails for ¢o(1) and ¢;(1): take n = {Ny, N3, N3},
N1 ={(-1/n,0): n € N}, N; = {(1/2n,0) : n € N},
N; ={(1/(2n +1),0) : n € N}.

b) (A modification of Example 5.19.) Let X, Xo, X; and M, be
as in Example 3.8, but replace ¢;(¢) in the definition of M; by

di(e) = c1(e) U {(H x]0,e[) N Xy : H C]0,¢[ is finite }.
(In 5.19, we did the same with |H| = 2.) {My, M;} is a family of Lodato

merotopies in the Euclidean contiguity space on X; the modification
was needed to make M; compatible. (ii) holds, but (iii) fails, just like
in 5.19. (Use Lemma 9.3 instead of Lemma 5.2.) ¢

9.8 Corollary. A single Lodato merotopy My in a Lodato contiguity
space has a Lodato extension iff int cg 18 a I'-cover whenever cg € My. O

It is not enough to assume that the trace filters are Cauchy, not
even when X, is open (take Example 5.18 b) with the Euclidean conti-
guity on X). In fact, the condition that int c§ is a §(T)-cover (i.e. that
there is a Lodato extension in (X, §(T'))) is not sufficient either:
Example. With X, X;,M; from Example 5.19 a), and the Euclidean
contiguity I' on X, int d;(¢)® is a §(T")-cover (6(I") is the same as § in
5.19 a)), but it is not a I'-cover (let n consist of three disjoint infinite
subsets of X7). ¢

9.9 Theorem. A family of Lodato merotopies given on disjoint closed
subsets in a Lodato contiguity space always has Lodato extensions; M® =
= MY is the coarsest one.
Proof. M° is an extension by Theorem 9.4. For any c;-open ¢;, intc? =
= ¢, thus M® = M}; MY} is always Lodato. ¢

Example 9.5 shows that the statement of this theorem is false for
intersecting sets, even for open-closed ones. M® and M} can be different

in general; e.g. with {M;} from Example 9.7 b), int ¢;(1)° & M°.
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