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Abstract: The theory of Hamilton geometry (k=1) has been developed by
R. MIRON ([15], {16]). In this paper we study the theory of kHamilton
geometry (k>1) using Miron’s theory of Hamilton geometry as a pattern.
First we show the reasons for undertaking this work and the previous results

in the theory of k-Lagrange geometry ([8], [9], [14]). Next, we consider the
k

vector bundle { = (@ T*M,n*, M) and describe the geometry of the total
1

k
space B* = @ T*M called k-Hamilton geometry.
1

1. Introduction

It is well-known that parameter-invariant problems (i.e. homoge-
neous cases) in the calculus of variations lend themselves well to geo-
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metrical interpretation and this has given rise to metric differential
geometries such as that of Finsler and its special cases: Riemannian
and Minkowskian geometry. But it is also known from the classical
calculus of variations (c.f. [3], [17], [18]) that there exist several prob-
lems for which the fundamental integral is dependent on the choice of
the parameter. This dependence implies that the Lagrangian cannot
possess certain homogenity properties.

It was J. Kern [6] who introduced the term Lagrange geometry
with a regular Lagrangian but without homogenity condition. It is
obvious that this geometry is more general than the Finslerian.

Although the introduction of the notion of Lagrange geometry
belongs to J. Kern, the whole theory of Lagrange geometry has been
developed by Romanian geometers led by R. Miron (c.f. [1], [2], [11],
[12], [13]). In the models for Lagrange geometry the basic manifold is
the total space T'M of the tangent bundle to a manifold M.

In a series of papers ([8], [9], [14]) we have constructed a geometri-
cal model for variational problems of multiple integrals called k- Lagrange
geometry. The formulation of variational problems of multiple integrals
(cf. [19] [20]) suggests that a geometrzcal model could be the fotal space

E = @ TM of the vector bundle @ ™™ — M.

We note that this vector bundle was used by C. Giinther [5] too.
Our theory, on the contrary, is based on the study of a metric which is
derived from the Lagrangian. We have used as a pattern the geometry
of the total space of a vector bundle as it was developed by R. Miron
[10].

We have described differential structures, nonlinear connections,
d-connections and metrical structures on E = @ T'M. We have pointed

out that E carries several tensorial struc‘cures:l and studied conditions
for their integrability. Furthermore we have given an application of k-
Langrange geometry considering the Moér equivalence problem ([17],
[18]) in the calculus of variations of multiple integrals.

In the papers [15] and [16] R. Miron has introduced a new concept:
Hamilton geometry which corresponds to the notion of Lagrange geo-
metry under the duality of the tangent (I'M — M) and the cotangent
(T*M — M) bundles. He studied also its applications in theoretical
physics.
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This article has been inspired by R. Miron’s papers mentioned
above and by the theory of k-Lagrange geometry.

Let us consider the 1-jet bundle Jl(IRk,TM) — M together with
the 1-cojet bundle Jl(TM,IRk) — M. The 1-jet bundle has typical
fiber L(]Rk,IRn) while the 1-cojet bundle has typical fiber L(]Rn,IRk).
We recall that J* (IR}“,TM) ~ Hom (]Rk,TM) ~TM® ORk)* as vector
bundles ([5], [8]). Moreover we have J!(TM,R*) ~ Hom (TM,R*) ~
~ T*M ® RF as vector bundles too. Here Hom (]Rk,TM) denotes the
total space of the vector bundle defined by all linear maps RF —
— TqM,q € M. Since there exist the isomorphisms Hom (IRk,TM) o~

k k
~ @ TM and Hom (TM,le) ~ P T*M, it follows that Hom(TM,]Rk)
1 1
is the dual of Hom (]Rk,TM). We shall use these isomorphisms in the
k
sequel. Let 7* be the projection on M,i.e. #* : @ T*M — M. We shall
1

k
consider the vector bundle (* = (@ T*M, n*, M) and the geometry of
1

k
the total space E* = @ T*M.
1

First we describe differential structures and nonlinear connections
on E*. We define tensorial structures on E* and give conditions for
their integrability.

Moreover, we shall study d-connections, metrical structures on E*
and the Legendre transformation between E and E*.
Acknowledgement. The author wishes to express her gratitude to
Professors Radu Miron and Mihai Anastasiei for their valuable com-
ments and suggestions. She would like to thank also Professor Hans
Sachs for his advice.

k
2. Differential structure on E* = 1*M
1

Let (U,%) be a local chart on M. Then (U,ga*,IRk") is a bundle
chart of the vector bundle (* where

(2.1) e* : () (U) —» U x RF™
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k _
and for(f)q €ePT;M (g€ M,a=1,k) we have
a 1

(2.2) " (Ear---2€a) = (PF)-
We can see that
(2.3) {q =pPidg =pPdg’ +... +prdg”

(x

which is a linear form for every a.

Puttig (¢*) = ¥(q) we define

(a) h*: () (U) - $(U) x R

29 (6) B*(Eqyeeesfa) = (65)

then we get the canonical coordinates (¢*,p%) on (7*)(U). The set of
k

charts ((7*)}(U), h*) defines a differentiable atlas on E* = @ T* M.
1

The transition maps on E* are as follows:

(2) T=7a(q"r0")
(b) ¢ =(0ig’)p§
where 8; = 3/3@‘ The transformation law shows that (p$*) can be

considered as a covariant vector. (In the following we denote p$* by p,
where (':) := a and use a shorter notation a,b,c... instead of double

(2.5)

covariant indices (‘:‘) or contravariant indices (;) if the computation
allows it for us.)

A local natural basis of the tangent space Ty« (E*) in u* € E* is
(6;,6) = (6;,0%) where 6; := 8/0; and &}, := 8/0pF. Its dual basis
is (dg*,dp?) := (dg*,dp,). Under a change of coordinates in (2.5) we
obtain

(2.6) i . ¢
; (b) 6, = 0;4°95 (8, := 8/0pF)

an

(2.7) (a) d7 = 8;7 d¢’

(b) dpf = py8;0;9*Brg’ dg" + ;97 dp?,
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respectively.

Hence we have a generalization of a result given by R. Miron in
the case k =1 in [15]:
Proposition 2.1. Setiing
k

(2.8) B=(p,---»p)

we get an R*-valued 1-form on E* whose components

p = pldg’ (a=1,k)
will be called fundamental forms.

The differential of p is obtained by differentiating its components.
So we have the following R*-valued 2-form on E*:

(2.9) w:=dp
where
210) (a) w=(b0r),

(b) w=dpfAdg' (a=T1,k)
Any 2-form @ is nondegenerate and dw = 0, hence
(2.11) dw = (dw, ..., dw) = 0.

This means that the R*-valued 2-form w is closed. Therefore w is
a polysymplectic form and (E*,w) is a polysymplectic manifold in C.
Giinther’s sense [5].

k
3. Nonlinear connections on E* =@ T'M

1

The kernel of D=* (the differential of 7*) is a subbundle of the
cotangent bundle @ T*M — M. It will be denoted by VE* — E* and

will be called the vertlcal bundle. A map u* — V,.(E*) where v* € E*
and V,,.(E*) is the fiber of the vertical bundle, defines a distribution V

k
on E* = @ T*M which will be called the vertical distribution.
1
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Definition 3.1. A nonlinear connection on E* is a distribution IN:
u* € E* — Ny« C Ty-(E*) which is supplementary to the vertical
distribution V, i.e.

(3.1) Ty (E*) = Ny» ® Vir

holds for any u* € E*. _

The vertical subspaces Vy» (E*) are spanned by (9,) = (8*). The
horizontal distribution N is locally determined by
(3.2) §f = 8;+ N3i(q,p)0] (87 :=6/67").

1

Hence (67, 67,) = (6%,8%) is a local frame, adapted to the decomposition

of T« (E*). The real functions N$i(g,p) defined on (7*) ™' (U) are called
the local coeflicients of the nonlinear connection IN and characterize it.

The dual frame is (dg*, 6*p%) = (dg*, 6*p,) where

(3.3) 6*ps = dps — Najdg’.

Under a change of coordinates in (2.5) we get their transformation laws:
a) &% = 0;q¢'6; b) 8% = 8;3'0?

(34) ( ) 7 Jq 1 ( ) o .‘lq [»3

(c) di' =8;3dg’  (d) 6'5F =g’ 65

With respect to the transformation (2.5) the coefficients N$(q°,p?) of
a nonlinear connection N have the following transformation law:

(3.5) N3(3,p) = 0;4*0:a" N3, (a,p) + py0;0:q*
for every a.
A direct calculation gives

(a) [65,67] = (6] Naj — 87 Nai)0*

(3.6) (b) [6F,8°] = —(8°Ny;)d®
(c) {aa1ab} = 0.

We can associate to a nonlinear connection on E* the following
geometrical objects:

(a)  Tia = Nig — Na; (a:= (".‘)),

(-7 (b)  Rauij=6Naj—6Nui (a:= (715))-

They give us antisymmetric d-tensor fields in ¢ and j. Moreover we
obtain
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Proposition 3.1. The horizontal distribution N is integrable iff R,:; =
=0.

The decomposition of the tangent space Ty,-(E*) at the point u* €
€ E* is the following

(3.8) Ty (E*) = Hye (E*) @ Ve (E*).

This decomposition defines a decomposition of the cotangent space

T (E*)in u* € E*:
(3.9) T (E*) = HL (E*) ® VA (E*).

The coframe (dg*,6*p%) is adapted to this decomposition.

The elements of Hx (E*) are 1-forms which vanish for vertical
vector fields and the element of V. x(E*) are also 1-forms which vanish
for horizontal vector fields.

An easy computation shows that d¢* are horizontal I-forms and
8*p, are vertical 1-forms.

By using §*p¢ we find that
(3.11) wt =1r8dg' Ndg' + 6*pF Adg'  (a=1,k)

which is compatible with the decomposition (3.9). This formula intro-
duces the 2-forms

(3.12) 0 = 6*p* A dgt (a=1,k)
considered by R. Miron [15] in the case k = 1.

The R¥-valued 2-form © = (61), ceny é) defines an almost polysym-
plectic structure on E*. As we have seen above this is a polysymplectic
form if 75; = 0 for every a. In this case the nonlinear connection N(Nj})
is symmetric.

As in the case of Hamilton geometry (for k¥ = 1) we have the
following relations between the adapted frames on Ty« (E*) and T, (E*)
respectively:

(a) <dg',6f>=6 (b) <&pf,6f>=0
(c) <d¢',8i>=0 (d) 6% ps ,51 = 6185 .

(3.13)

We can associate to N an almost product structure P on E* defined
as follows:

(3.14) (a) P(65) =8  (b) P(8L)=—dL.
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It is easy to check that

o

(3.15) O(PX,PY)=-0(X,Y) (a=1k)

for any X,Y € X(E*). This can be written as

(3.16) O(PX,PY) = -0(X,Y)

k

where © = (é, ..., 0). We shall call (0,P) almost hyperbolic structure

on E*,.

k
4. Tensorial structures on E* = @ "M
1

If we set

(4.1) (a) F(61)=—85 (b) F(8) =6 (c) F(8)=0,(V8+#aq)

we obtain k f-structures for which
(4.2) P34 F =0 (a=T1,k).
Analogously, we can define as in the case of k-Lagrange geometry [8/

the following tensorial structures é(a =1,k)

(4.3) (a) Q(6) =085 (b) Q8L =6 (c) Q(8))=0 (V6 +#a)

and we obtain

a

(4.4) Q*-Q =0 (a=1k).

Moreover we have

(a) O(FX,FY)=
a p__ B

) 6(6x,6) =

for any a,f and any X,Y € X(E*).

Now we study the integrability of the structures F and 63 respec-
tively.

X,Y),
X,Y)

(4.5) ?(
O
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We have the following conditions

a) ran Py = n < nk
(4.6) ) k“’? - (k>1)
(b) rank(Q)=n <nk

It is easy to see that F; = _F? and F, = F? + I are two supple-

mentary projectors associated to F. Tt is said that F is integrable if
the distributions associated to Fy and F, are integrable. As V. Duc [4]
proved these distributions are integrable iff Ng, = 0 where N g, means

the Nijenhuis tensor field of F? (a =1,k).

Further we associate with @ the set of projectors @; = I — Q?,
Q2 =
= 1(Q + Q% and Q3 = %(—Q + Q?). Let D;(i = 1,2,3) be the
distributions defined by these projectors. The structure @ is said to be
integrable if the distributions D; and D;+D;(j = 1,2, 3) are integrable.

V. Duc [4] proved that é is integrable iff Ng = O where Ng is the
Nijenhuis tensor field of é(a =1,k).

Using the definition of F' we get
(4.7) (a) F2(87)=—6; (b) F2(8i)=—0%

(c) F2(0p) =0 (B+# ).
The relation (4.2) implies that
Ft=—F2.

Hence we have
(49)  Ng.(X,Y) = [F2X, F?Y]+ FAX,Y] - F2[F?X,Y]-
_F[X,F?Y] = [F2X, F?Y) - F2[X,Y] - F?[F?X,Y] - F2[X, F2Y].
To find conditions for the integrability of F which are equivalent to

V. Duc’s conditions we shall compute N g, in the adapted frame (61,8%)
using the relations (3.6) and (3.7) (b). We obtain for fixed a

(a) Ng.(8%,65) = R85 (summing over 8 # a)
(b) Ng,(63,8%) = —0k(NE)B,  (summing over § # a)

(410)  (c) Npa(8f,85)=0 (8 # a)
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(d) Npa(04,05) =0

(e) Np.(85,85) =0 (B # o)
(f) Nga(85,0%) =0 (B #a, v#a)

Theorem 4.1. F is integrable iff

(411) (a) R, =0 (VB#a), (b) 85(NE)=0 (VB +# a).

Corollary 4.1. All Fa =1,k) are integrable iff R%, vanish and N

depend only on (pf)(a = 1,k).
Remark. Condition (4.11) (a) shows that integrability of the ho-
rizontal distribution is a necessary and sufficient condition for the inte-
grability of F. N

Now we proceed similarly for Q using its definition. In general we
have

-QIX,QY], X,Y € X(E*),
hence for the adapted frame we obtain

(a) N (85,6;) = R85 — S (0ENG — 05N g )8}
(not summing over a)

(b) Ng (670%) = DLN8, ~ OENGO, — Y R, 81 =

1] o
= OLN}O% — S RE,6! (14 )
(414) () Ny (55, 08) = = 2(GENS)S! (8 # )
(4) N (03, 05) = RJ,,05 + S2(0ENG — 94N3)6;

R

a? Yo ik

(not summing over a)
(©) N3 (04,05 = SohNgs (84 )
() Ng05,05)=0 (B#0,79#a)

So we have proved
Theorem 4.2. Q is integrable iff
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(a) By = 0 (i-e. the horizontal distribution is integrable)
iy MO0 (e

(c) BENG = BLNG

(d) 5NE =0 (B # a).
Corollary 4.2. All Q(a =T1,k) are integrable iff
(4.16) (a) B =

(b) N{: depends only on (pf')(a is fized).
We can see that the condition (4.14) (c) is equivalent to (4.15) (a)
and the condition (4.15) (d) follows from (4.15) (b) and (c).

Corollary 4.3. If Q is integrable then F' 1is integrable. If all é are
integrable then all F' are integrable.

k
5. d-connections on E* = @T*M
1

A distinguished connection — shortly d-connection — on E*, en-
dowed with a nonlinear connection, is a linear connection D on E*
which preserves by parallel displacements the horizontal and the verti-
cal distributions.

Now we are interested in its local representation. We put as
usual:

(5.1) (a) DY =DuxY (b) D% =D.,xY (X,Y € X(E"))
and with respect to the adapted frame (67, 8%,) we set

1) o

652) (2) D65 = L}, (b) Dy 85 = L85
' (c) Dys;=Ci'gsi  (d) Dydi=Cegdl.

Hence we have obtained a set of functions
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(5.3) I'D = (Li(g,2), L33 (a,p), C;ik(a,p), C%(q,p))-

The set L‘k cha,nges like the components of a linear connection on M

and the set LJ ix changes like the components of a linear connection in

':‘) as contravariant and covariant

indices ([8]). The é i k and éf" * change like the components of the
d-tensor fields on E*

The set I'D characterizes a d-linear connection, i.e. if I'Dis given,
’&here exists a unique d-connection such that its local coefﬁments are just
rD.

Now the h- and v-covariant derivatives can also be considered with
respect to I'D. Since later we need the h- and v-covariant derivatives
of a double covariant tensor field g = g;;(g,p)dg' ® dg’ on M and of a

a vector bundle if we consider (ﬁ), (

double contravariant tensor field § = gljﬂ(q,p)5*P? ® 5*p? on E* now
we give them

* *

(a)  gijk = 659i5 — Lirgsi — L‘J"kgia,
( ) gz]a akgzj Cskgn - Caagun

* 3]

(c) gaﬁk = 5k9aﬁ + Lamkg‘yﬁ + Lﬁmkga'y’

(@) ghjk = Bhai]+ Criboim + ki,
The vector field Z = pfd?, which is globally defined on E* will be
called the Liouwille vector field on E*.

A d-connection is of Cartan type if

(5.5) Dz =0, DyZ=X (VX € X(E")).

(5.4)

Expressing locally this condition we obtain:
Theorem 5.1. A d-connection is of Cartan type iff

(5.6) &= pﬂLﬁzk +N% =0, C‘:’)‘Z; =0.

The tensor field DS, is called h-deflection tensor field associated
to D. (cf. [15]).

The torsions of D are defined as usual. Their local coefficients are
the following:
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(@) Thi=Lij—=Lix  (b) R'-Jk =61 (N%) — 8(N5;)
(B.7) (c) Cjif . (d) PLji=08iN% - Lix,
aik ajk aki .
(C) Sr:/]ﬁ C‘l‘:ﬂ C“ﬂ‘:

k
6. Metrical structures on E* =@ T*M

Definition 6.1. A functlon H: G}T*M — ]R is called a Hamzlton

function (or a Hamiltonian). If H : ( ¢, p%) — H(q ,P5) and the ma.tnx
with the elements :

(6.1) : gaﬂ =& Bﬂ (gaﬂ = gﬂa)

is nondegenerate, i.e. its rank is nk, then the Hamiltonian H will be
called regular.

Theorem 6.1. Any regular Hamzltoman H(q,p) deﬁnes a metrical
structure called Hamilton structure in the vertical bundle VE* -
Proof. Define the map

(a) gus : Vur(E*) X Vir (B*) >R (u* € E) as
(6.2) (b) gu-(X, Y)= gaJXaYﬂ where
() X=X20, and Y = Yf(’)},

are vertical vector fields. This map is well-defined and obviously linear

with respect to X and Y. By Definition 6.1. it is nondegenerate. ¢
Now if g= g¢:;(¢,p)dq* ® dg’ is a tensor field on E* such that

det||g;;|| # 0 the following metrical structure can be considered on E*:

(6.3) G = g:;(¢,)dq" ® d¢’ + g5} (a,0)6* 12 ® 6*FF.

As usual we say that a d-connection is metrical with respect to G if
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(6.4) DxG =0
for any X € A(E™*). This condition is equivalent to the following: (6.5)
giie =0, gi*=0, g.3,=0, g.5l5=0.

We can prove by direct calculation using (5.4) and the symmetric
property of the Hamilton structure:
Theorem 6.2. The following d-connection 1s metrical and it torsions
T and § vanish:
(6.3)

(a) Li, = %g"’”(ﬁ’-‘gkm + 859im — 67.95k)

(b) Li% = B3NS + 9“1(5?2 ghy — 05(N5 gl — 07 (N5 )als)
( ) C~. 8= iguaﬁ(g]a)

(d) C’f;’; lgw (87ghr + Ofgin — Og ).

Here g*/ is the inverse of g;; and gi) is the inverse of g;nﬁj ie.
979k =65 and g"Zg:},] = 6:’5ﬁ = 51%7

hold.

An interesting particular case is obtained when g;; do not de-
pend on p. In such a case g;;(g) can be thought as defining a metrical
structure on M and we have

*i 1 im( c* * *
(2) Lix = 597 (85 9km + 619m — 67.91¢)

(b) C. ’ﬂ =0
(6.7) ) .
(C) Lﬁzk - a;-?N + Py 171(62 é'y aé( :k)ge-y am( :k)geé
a L. Qe kr jr r J
Furthermore taklng into account the Hamilton metric in (6.1) we get
Sajk _ 1 _ae _&H
(6'8) ‘ Cryﬂ - 2g1. 1‘6?18}, 6?1-

and so the contravariant part of 8,
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(6.9) Clmk .- gpigiek 1 __o'H

Y68 vif 2 9ps, 8;7;.7 api

is symmetric in the indices (fy), (’g‘), (;)

Remark. C’?ﬁk corresponds to the tensor C™* from the Hamilton
geometry (k =1).

7. Legendre transformation

k *
Let us consider FE =J'(R*TM)~@TM-">M and E =
1

k *
= JY(TM,R*) ~ @T*M">M. A Lagrangian L is a real-valued

function on F (c.f. 1[14]). The vertical derivative of L is written as
d,L|, = d(LIE,(u)) where d means differential of functions. This is
a vertical 1-form because LIEr(u) means locally that (z',...,z") are
fixed so d(L|E,,(u)) = 0%Ldy’, i.e. an element 07 (L) of E* is obtained.
Hence a map £ : E — E* can be defined as follows:

(7.1) L(z*y%) = (¢, pF = 08L(z,y))  ((2%) = (¢') € M).

The map L is called Legendre map. Generally it is not a bundle mor-
phism but it preserves the fibers.
Definition 7.1. The Lagrangian L is said to be regular if £ is a local
diffeomorphism and it is said to be hyperregular if £ is a global diffeo-
morphism. In the latter case £ will be called Legendre transformation.
By (7.1) L is regular iff the matrix (g5 ) (6°‘BﬁL) is nondegen-
erate in any system of coordinates, i.e. the second order differential of
LIE,(,‘) is nondegenerate for every u € E.
Let us put the relation between a Hamiltonian and a Lagrangian
under the Legendre transformation £:

(7.2) H =y} - L.

We prove:

Proposition 7.1. The inverse L' of the Legrende transformation
L s




92 M. Sz. Kirkovits

(7.3) L7Y(g",pf) = (2*,ya = 0uH(=,p)).
Proof. We shall show that £~ oL = id|g and conversely, LoL™! =
id|g-. Consider the Defintion 7.1. Since L(z,y) does not depend on
7L we get by direct calculation
i iy £ o " H
( 7ya)_)(q ,P,, 8 L)—)(:B 7ya = aa )
= (2*,8(yL — L)/8(87L)) = (<*,8585y5 — 0) = (=, ).

Conversely, since L = @yj — H and the function H does not depend
y ;v p

(7.4)

on 8., H we directly obtain
(15)  (¢5p) (et vk = BLH)S(g, OL|6(9LH)) =
= (¢, (¢85 H — H)/8(8.H)) = (', ;6165 — 0) = (¢',pF). O

If LT and (£L7)7T are the tangent maps to £ and L™, then we
have

(a) L7(8:) =0+ 60 (L)oh

(b) L7(3) = g5/ 0 (5i - a1aq*'>
(c) (L7178 =8;+.04(H)og 8; := 0|0z’
(d) (£71)7(8%) = OLB5(H)S] = 9,405

(7.6)

By using these formulae we shall prove
k
Theorem 7.1. IfL is a hyperregular Lagrangian on E = @ TM (i.e.

1
the Legendre morphism associated to it is global diffeomorphism), then
k
L carries a nonlinear connection N on E = @ TM into a nonlinear
1

connection N on E = é T*M. If Ni(a,y) are the local coefficients of
Nand N%(g,p) are the local coefficients of N, then we have

(7.7) N%(g,p) = (050 ;(H) + N};)gis

Proof. From (7.6) (a) and (b) we deduce that

(7.8)  LT(8:) = LT(8: — NL05) = B+ 8:0°(L)8s — Ni,g2P o) =

aivj

=01+ (B:05 (L) — Nig3l)0h.
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Moreover, from the defintion of H in (7.2) induced by L it follows
(a) 8;H=-5L
(7.9) (b) 8:0°(L) = 8°(8;L) = —82(8 :H) = _aga(g)agpg =
= —8i8;(H)0295L = —0i0;(H)gas (¢ =4').
Hence for the local basis adapted to the horizontal distribution N on
E ((8]) we get

(7.10) LT(6:) =8 : +(—058 i(H) — Ni,)g2h0%.
Putting
(711) N = (858 (H) + NZ)g3f

we have obtained that LT maps {4;} to the local basis {‘5} adapted to

N on E and the formula (7.7) holds. &
Remark 7.1. If L is only regular then Theorem 7.1. is valid only

locally, i.e. on an open set of @ TM for which L is diffeomorphism.
Remark 7.2 Even though L i 1s only a local diffeomorphism the coef-

ficients N fi define a global nonlinear connection since they satisfy the
usual transformation law as it can be seen by a long calculation.
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