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Abstract: Let N= C(A, G) be a centralizer near-ring determined by a group
A of automorphisms of the group G such that the identity of N is the sum of
a finite number of mutually orthogonal primitive idempotents, e;. A group
M is called an SE-grcup for Nif N acts as a semigroup of endomorphisms on
M with an aditional ”strong” property for the idempotents, e;. In this paper
we investigate the structure of the centralizer near-ring C(N,M) and as an

application obtain a near-ring analogue to a well known matrix theory result.

1. Introduction

Let R be a ring with 1. Then R forms a left unital R-module
rR and a right unital R-module Rg. With each of these R-modules
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we have the ring Endr(gR) of R-endomorphisms of gR and the ring
Endgr(RRg) of R-endomorphisms of Rg. It is easy to see that Endgr(rR)
is anti-isomorphic to R and Endg(Rpg) is isomorphic to R.

This left-right duality for rings fails for near-rings. Let N be a
(right) zero-symmetric near-ring with 1 which does not satisfy the left
distributive law. Then yN is a left unital N-module (see Pilz [6] or
Meldrum [4] for near-ring terminology and basic facts). However, since
N does not satisfy the left distributive law, there exist elements ny,n,
and ng in N such that n;(n; 4+ n3) # niny + nins, violating a right
N-module axiom.

The near-ring analogy to Endgr(rR) is the set Mapy(nN) con-
sisting of all maps f from N into N such that f(nm) = nf(m) for
all n in N and all m in yN. As in the ring case Mappy(nN) consists
precisely of right multiplication maps by elements of N, but if N does
not satisfy the left distributive law then, under function addition and
function composition, Mapy (V) does not form a near-ring since it is
not closed under addition.

Using Ny we see that Mapy(Nn) consists of left multipliation
maps by elements of N and it forms a (right) near-ring under function
addition and function composition. The near-ring N acts on Ny as a
semigroup (under function composition) of endomorphisms of the group
(Nn,+). Forif ny,ny arein Ny andnisin N then (n;+mny)n=
= nin + nzn. Since the left multiplication maps Mapy(Nn) are pre-
cisely the functions on N that commute with the right multiplication
maps so Mapy(Ny) is the centralizer near-ring C(N, Ny) where N
acts on Ny as a semigroup of endomorphisms via right multiplication.
(See [2] for details about centralizer near-rings C(S,G) where S is a
semigroup of endomorphisms of the group G.)

The prototype of a finite-ring is the centralizer near-ring C(A4, G)
where G is a finite group and A is a group of automorphisms of G (see
[2]). If N = C(4,G) then the identity 1 of N is the sum of mutually
orthogonal primitive idempotents, 1 = e; + e3 + - - - + e;. Moreover we
have, for every ¢,j with i # j,n(e; + €;) = ne; + ne; for all n in N,
and e; + e; = e; + ;. This implies that if n belongs to N such that
ne; = 0 for every 7 then n = 0. With this in mind we have the following
definition where N = C(4, G).

Definition. If N = C(4,G) with 1 = e; + ez + -+ - + e; as above, then
a group (M, +) is an SE-group (strong endomorphism group) for N if
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here is a composition M x N to M such that

a) (my + my)n = myn + myn for every my,my in M and n in N,
b) (mny)ny = m(nin,) for every m in M and ny,n, in N,

c) ml = m for every m in M,

d) m0 = 0 for every m in M, and

e) if m in M is sucht that me; = 0 for all 7, then m = 0.

Thus, when M is an SE-group for N = C(4,@), the first four
axioms require that N acts as a semigroup of endomorphisms on M
with 1 acting as the identity map and 0 as the zero map, while the
"strong” property (e) leads to m(e; + e;) = me; + me; for all ¢,7 with

We note that if M; and M, are SE-groupsfor N then so is
My + M,. Also if R is a right ideal of N then R is an SE-group for N.
In particular, Ny is an SE-group for N. Moreover, with each SE-group
M for N we have the corresponding centralizer near-ring C(N, M).

It is the purpose of this article to investigate the structure of the
near-ring C(N, M) where N is a finite centralizer near-ring of the type
C(A,G), A is a group of automorphisms of G and M is an SE-group for
N. In the next section we focus on the case where N = C(4, G)isa
simple near-ring. In section 3 we present two general results and in the
final section we use a theorem of A.P.J. van der Walt ([8]) to obtain a
near-ring analogue of a well-known matrix theory result.

t
(
(
(
(
(

2. Structure of C(N,M),N simple

In this section NV represents a finite centralizer near-ring C(4, Q)
where A is a group of automorphisms of the finite group G and 1=
= e1 + ez + --- + e; where the e;’s are mutually orthogonal primitive
idempotents. We recall that if N is simple then there exists a group G
and a fixed point free group A of automorphisms of G such that N is
isomorphic to C(4, G).

Lemma 1. Let N = CA,G) withl=-¢e; +e3+---+e; and let M be
an SE-group for N. If f belongs to C(N, M) then

(a) f(Me;) is a subset of Me; for every i and

(b) f(mie1 +maeg +--- +mie;) = f(mier) + f(maex) +-- -+ f(mqe,)
for allm; in M.
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Proof. (a) For m in M, f(me;) = f(me;e;) = f(me;)e; which is in
Me;. .

(b) f(mie1+maea+---+mie:) = f(mier+maes+- - +myes)(er+
tezt--ter) = f(miey +maes+- -+ myer)es + f(moe; +mpep +-- -+
+myes)ey + - -+ + f(mies + maey + -+ muey)es = f(mey) + f(meg)+
+ o 4 f(me). &

Lemma 2. If N is simple with N = C(A,G) where A is fized point
free then f in C(N,M) is completely determined by its action on the
set Me;. :

Proof. For ¢ # 1 there exist elements e;; and e;; in N such that
€i1€1; = €;, €15€;1 = €1, €;1€1 = e;; and ej;e; = e;;. We have Me; =
= Mejiei; and so f(me;) = f(meier;) = f(meir)ei;. Since mej
belongs to Me; so f(me;;) is known and f is determined on Me;.
Since M is a sum of the Me;’s, f is determined on M by Lemma 1,
part (b). We note that the extension of f is unique, for if f(Me;) = {0}
then f(me;) = f(me;1)e1; = 0 and so f is the zero map. ¢

Our first theorem characterizes C(N, M) when N is simple.

Theorem 1. Let N = C(A4,G) be a finite simple near-ring where
A is a fized point free group of automorphisms of G. Let M be an
SE-group for N. Then C(N,M) is isomorphic to C(Ny},,Me;) where
N{, is the set of nonzero elements in ey Ne; and acts on Me, by right
multiplication.
Proof. Define ¢ from C(N, M) to C(N{,, Me;1) by ¥(f) = f restricted
to the set Me;. By Lemma 1, 9(f) is a function on the group Me;.
Since f belongs to C(N, M), f(me;)ni; = f(me;ny;) where nqy is in
N{,. This means 9 (f) belongs to C(N;;, Me;). The function 1 is one-
to-one by Lemma 3. That 1 preserves sums and products in C(N, M)
is easily checked.

It remains to show that i) is onto. To this end, select g in
C(N{y,Me;). The function g is already defined on Me; and we need to
- extend g to all of M. Define g on Me; as follows: g(me;) = g(me;y)e;.
We show that g is well defined. For suppose mje; = mye;,m;, ms in
M. Then (mje; — mae;;)er; = 0. Hence (miea — myei)e; = 0 and
since (me;; —mgeiy)e; = 0for j =2,...,t, we have mie;; —maesn = 0
by property (e) of the definitionn of SE-group. Extend g to all of M
additively, that is g(m)=g(me; +me, +.--+ me;) = g(mey )+
+g(mez)+- -+ g(me;). It remains to show that the extended function
g belongs to C(N, M), i.e. that g(mn) = g(m)n for every m in M and
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n in N. We have g(mn) = g(mne;) + g(mnez) + - - + g(mne;) and
g(m)n = g(m)ne; + g(m)ney + --- + g(m)nes, so it suffices to show
that g(mne;) = g(m)ne; for each i. Since N is a centralizer near-ring,
ne; = ejne; for some index j (which depends on n). So we have

g(mne;) = g(me;ne;)
= g(mejl eljneilelz’)
= g(meji(e1jne;))ers (definition of g)
= g(me;1(e1;nei )(ney; (g belongs to C(N{y, Mey))
= g(mej1)(e1jne;)
= g(mejie;j)ne; (definition of g on M;)
= g(me;)ne;
= [g(me;) + g(mez) + - - + g(me;)]ne; (since ne; = e;ne; and
g(me;) belongs to Me; for each j)
= g(m)ne;. &

We remark that since centralizer near-rings are zero-symmetric,
C(Ny;,Me;) = C(e1Ney,Me;). In the sequel we will often use this
observation.

By specialzing M we obtain several applications of Theorem 1.
Our first application is obtained by letting M = Ny.

Lemma 3. Let N be the finite simple near-ring C(A, G) where A is a

fized point free group of automorphisms of G and 1 = e; +e3+ -+ + ey,

mutually orthogonal primitive idempotents. Then

(a) Ny, is a multiplicative group anti-isomorphic to A,

(b) Ne;y is an additive group isomorphic to G,

(c) Nj, acts on Ney by right multiplication as a fized point free group
of automorphisms, and

(d) C(Ny1,Nei) is isomorphic to C(4,QG).

Proof. (a) Let v; be a nonzero element in G sucht that e;(v1) = v;.

Then v; belongs to Av; and NJ; = {f in N|f(v;) belongs to Av; and

f(w) = 0 for all w not in Av;}. Since A is fixed point free it follows that

for every o in A there exists a unique f in N/, such that f(v;) = ov;.

Define 9 from Ny, to A by ¢¥(f) = o where f(v;) = ov;. If f,g are

in Nj; with f(v1) = ov; and g(vi) = o'vy then (gf)(v1) = g(ov1) =

og(vi) = co'vi. So¥(gf) = oo’ = ¥(f)¢¥(g). The function 1 is clearly

one-to-one and onto.
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(b) Since A is fixed point free, if 0 # 1 belongs to A and if v
is nonzero in G then o(v) # v. This implies (see [2]) that if v; is as
in part (a) then for every w in G there exists a function f in N such
that f(v,) = w and f(v) = 0 for all v not Av;. Moreover f is unique
with this property and f belongs to Ne;. Define ¢ from Ne; to G by
©(f) = w. Now ¢ is easily seen to be an isomorphism of Ne; onto G.

(c) If n1; belongs to Ny, then define the map R,,, from Ne; to
Ne; by R,,,(ne1) = neini;. The map R,,, is clearly an endomor-
phism of the group (Nej,+). Moreover it is an automorphism, for if
R,,,(ne; = 0 then nejni; = 0. But N}, is a group with identity e;
under multiplication so ny; has an inverse 'nl_l1 and 0= 0"1_11 =
= (nelnn)nl_ll = me;p, which implies R, , is one-to-one. Since Ne; is
finite the map is onto.

To show N{; acts fixed point freely on Ne; suppose R,,,(ne;) =
= ne; # 0. Then ne; = ne;n;;. We have ne; = ejne; for some j.
Since N is simple there exists m;; in exNe; such that mi;ne; = e;.
This means e; = m;jne; = mijneiny;, and R,,, = R, which is the
identity map on Nq;.

The correspondence R,,, to ni; is an anti-isomorphic of { R,,,, [n11
belongs to Ny, } with N} and since the latter is anti-isomorphic to A4,
{Rn,,|n11 belongs to N} is isomorphic to A.

(d) To show C(Ny;,Ne;) and C(4,G) are isomorphic it suffices
to show that the pair (N, Ne;) is isomorphic to the pair (4,G) by
way of a semi-linear transformation ¢ from Ne; onto G (see Maxson
and Smith [3] or Ramakotaiah [7]). (Here N7, is identified with the
right multiplication maps by elements of the set N;j.) Let ¥ be the
isomorphism from Ne; to G defined as in (b) and let 8 from {R,,, |n1;
belongs to Nf;} to A be the isomorphism as developed in (c). Then
Y(Bny, f) = ¥(fnu) = fou(vi) = f(nuv) = f(Bvr) = BF(v1) =
= ?,11¢( f), and v is our desired one-to-one semi-linear transforma-
tion.

This leads to the following application of Theorem 1.

Corollary 1. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. Then C(N,Ny) is isomorphic to N.
Proof. By Theorem 1, C(N, Ny) is isomorphic to C(N;;, Ne;) which
is isomorphic to N by Lemma 3. ¢

Corollary 2. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If k is a  positive integer let NF =
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=NON@---®N (k direct summands). Then C'(N, Nk) 18 tsomorphic
to C(A,G*). In particular C(N,N*) is simple.

Proof. By Theorem 1, C(N, N*) is isomorphic to C(N},, N*e;). Asin
the proof of Lemma 3, N¥e; is isomorphic to G* and N}, acts on NFe,;
fixed point freely by right multiplication. Also as in the proof of Lemma
1 the pairs (N{;, N*e;) and (4, G*) are isomorphic via a semi-linear
transformation. So C(N, N*) is isomorphic to C(4,G*) and since A
acts fixed point freely on G*, C(N, N¥) is simple. ¢

If N=C(A,G) and if R is a right ideal of N then M = R is an
SE-group for N. Our next application of Theorem 1 deals with this
situation. First we describe the right ideals in the simple near-ring
N =0(4,Q).

Lemma 4. Let N be a finite simple near-ring with N = C(A,G) where
A is fized point free. A nonempty subset R of N is a right ideal of N
if and only if there ezists an A-invariant subgroup H of G such that
R = ey N where ey in N is the idempotent map on G which is the
identity on H and zero off H.

Proof. If H is an A-invariant subgroup of G and if R = ey N it is
easily verified that R is a right ideal on N.

Now assume R is a right ideal of N. Let H = {w in G| there is
awvin G and an f in R with f(v) = w}. To show H is an A-invariant
subgroup of G select w # 0in H. Then there exists av # 0in G and an
fin R such that f(v) = w. For §in A we have f(Gv) = Bf(v) = fw,
an element of H. So H is A-invariant. Since N is simple and A4 is
fixed point free, it follows that for every v # 0 in G and any u in G
there exists an n in N such that n(v) = u. So if w belongs to H with
g(u) = w where g is in R then g(u) = gn(v) = w and gn belongs to R
since R is a right ideal. This means H = Rv for every nonzero v in G.
But Rwv is clearly a group, so H is a subgroup of G.

Let ey be the idempotent in N which is the identity on H and 0
off H. We show now that ey belongs to R. For h # 0 in H let e, be
the idempotent in N which is the identity on Ah and 0 elsewhere. Since
Rh = h and ep(h) = h we have Reph = H. The elements (maps) of
Rey, are all 0 off Ak, so there exists an rej in Rep, such that reg(h) = h
and rep, is 0 off Ah. This means re, = e, and e, belongs to R. Since
er belongs to R for all nonzero h in H and since H is finite, ey belongs
to R (ey is the sum of e}’s, one h for each nonzero A-orbit in H).
Corollary 2. Let N be a finite simple near-ring with N = C(4,G)
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where A is a fized point free group of automorphisms. Let R = eg N be
a right ideal of N. Then C(N,R) is isomorphic to C(N7,, Re1) which
in turn is isomorphic to C(A,h), a simple near-ring.

Proof. That C(N, R) is isomorphic to C(N;, Re;) is clear from The-
orem 1. To see that Nj, acts fixed point freely on the group Re; by
right multiplication it is enough to use Lemma 3, part (c) since Re; is
a subset of Nej.

We have Re; isomorphic to H and as in the proof of Lemma 3,
part (d) the pairs (N7, Re1) and (A, H) are isomorphic via a semi-linear
transformation. So the simple near-ring C(N{;, Re;) is isomorphic to
C(A,H). ¢ _

Corollary 4. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If R = eg N is a right ideal of N then for
any positive integer k, C(N, RF) is isomorphic to C(Ny,,(Re1)*) which
in turn is isomorphic to C(A, H*), a simple near-ring.

Proof. Similarly to that of Corollary 2. {

Corollary 5. Let N be a finite simple near-ring with N = C(4,G)
where A is fized point free. If R = egN is a right ideal of N such
that (R,+) is a normal subgroup of (N,+), then N acts on N/R by
(a + R)n = an + R and C(N,N/R) is isomorphic to C(Ny;,(N/R)e1)
which in turn is isomorphic to the near-ring C(A,G/H). Moreover
C(A,G/H) is simple.

Proof. The first isomorphism is from Theorem 1. Since (R,+) is
normal in (N, +) so H is normal in G. One checks that (N7, (N/R)e;)
and (A4,G/H) are isomorphic via a semi-linear transformation.

To see that C(A,G/H) is simple it suffices to see that A acts

fixed point freely on G/H. Suppose § # 1 belongs to A and that
B(v+ H) = v + H. This means —v + Sv belongs to H. We recall (see
[1]) that a fixed point free automorphism § on a finite group G has
the property that every z in G has the unique form —z + fz. Since
B acts fixed point freely on H and since —v + v belongs to H we
have —v + fv = —w + Pw for some w in H. This implies v = w and
v+ H = H,i.e. v+ H is the identity element of G/H. {
Corollary 6. Let N be a finite simple near-ring with N = C(A,G)
where A 1s fized point free. If R = egN is a right ideal of N such
that (R, +) is a normal subgroup of (N,+) and if k is a positive integer
then C(N,(N/R)*) is isomorphic to C(Ny,,(N/R)¥) which in turn is
isomorphic to C(A,(G/H)¥).
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Proof. Similar to that of Corollary 2. ¢

If N is simple and if M is an SE-group then C(N, M) need not
be simple as the following example shows.
Example. Let N be GF(4), the finite field with 4 elements. The
field N is clearly a simple near-ring and N = C(4, G) where G is the
group (GF(4),+) and A is the fixed point free automorphism group on
G F(4) consisting of the right multiplication maps by the three nonzero
elements of GF(4).

Let N = {0,1,a,a’}, then A = {1,R,,R,2}. Let M = Sj, the
symmetric group on three elements. Define the action of N on M as
follows: if # is in S5 then

Ba =(123)715(123)
Ba? = (132)714(132).

So right multiplication by 0 is the zero endomorphism of S3, by 1 is the
identity map, by a is the automorphism which is conjugation by (123),
and by a? is the automorphism which is conjugation by (132). With
this action of N on M, M forms an SE-group for N. But C(N,M) =
= C(N*,S3) is not simple since (123) in M = S3 is fixed by all the
nonzero elements N* in N and (12) is not (so there is stabilizer con-
tainment, see [2]). ‘
Let N be a finite near-ring with N = C(4,G) where A is a fixed
point free group of automorphisms of G. In N we have 1 =e; + ez +
+ ---+e, where the e;’s are mutually orthogonal primitive idempotents.
- Suppose the positive integer s is a proper divisor of u, say u = ts. Let

flzel+82+'.o'+68
fa=€sy1+esq2+ -+ a5

ft = e@—1)st1 + €(t—1)at2 + -+ + €ts,

then 1 = fi + fo + --- + fi where the f;’s are mutually orthogonal
idempotents. If M is an SE-group for N and if m is any element in M
thenm = m(fy+fa+- -+ fi) = mfi+mfo+---+mfy. (Forif m belongs
to M, then for each i,(m(fi+fa+- -+ fi)—mfi—---—mfa—mfi)e; = 0.
Since M is an SE-group, m{fi + fa+ -+ ft) —mfr — -+ —mfa—
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Theorem 2. If N and M are as above then C(N, M) is isomorphic to
O(.leflaMfl)-

Proof. Since N is simple and 4 is fixed point free then for every i, j
such that 7 # j there exist elements ei; in e;Ne; such that e;je;; = e;.
The proof of Theorem 2 is the same as that of Theorem 1 replacing e;
with f;, and replacing ej;e;; by

fri = e ictyer1 + e (ic1yat2 + o + €5 s,
fit = et 1)at1,0 T €lic1)st22 + - + €isa,

where we have fi;fi = f1 and fii fii = fi. ¢

We mention two special situations for Theorem 2.

(a) Let M = N, then C(N,Npy) is isomorphic to each of the
following: C(e1Ney, Nei), C(fiNfi,Nfi) and N.

(b) Let M = N* (k, a positive integer), then C(N,N*) is isomor-
phic to each of the following: C(e1Ney,(Ne1)*) and C(fiN fi, (N f1)).

3. Structure of C(N,M),N not simple

Assume N is a finite semisimple near-ring where N = N, @ N,®
®---® N, (direct sum) with each N; simple. If f; is the identity of NV,
for each i then 1=f; + f,+---+ f, in N. Let M be an SE-group for
N. Then if m is in M we have m=m(fi+ 2+ -+ f:) =mfi+
+mf2 nall +mf3-

Theorem 3. If N and M are as above then C(N,M)=C(N.,Mf1)®
®C(Ny, Mfo)®--- & C(N,,Mf,) (direct sum).

Note. Since each N; is simple, it follows that if the conditions of
Theorem 1 are satisfied (which will be the case if N; is not a ring)
then C(N;, M f;) is isomorphic to C(efNiel, Mfel) = C(e;N;el, Mel)
wherein N;, fi = el +e2 +.-. + ef" (primitive idempotents).

Proof of Theorem 3. Clearly M = Mfi & Mfo ®---® MF, (direct
sum). If g belongs to C(N, M) then g(Mf;) is a subset of M f; and
g(mfi+mfa+---+mf,) = gmfy + gmfy + - + gmf,. The map ¢
from C(N, M) to C(N1, M f1)®C(N2, M £2)®---@C(N,, M f,) defined
by ¢(g) = g1 +g2 + -+ + g, is our isomorphism where g; is ¢ restricted
to Mf.,, <>
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The following is valid for an arbitrary finite centralizer near-ring of the
form C(A, G) where A is a group of automorphisms of G.

Theorem 4. Let N be the finite centralizer near-ring C(A,G). If H
is an A-invariant subgroup of G let R = {f in N|f(G) is a subset of
H}. Then C(N, R) is isomorphic to R.

Proof. R is easily seen to be a right ideal of N. If ey is the idempotent
in N which is the identity on H and 0 off H then R = ey N. We have

C(N,R) = {f|f(rn) = f(r)nfor all 7 in R and n in N}
= {f|f(exn) = f(eg)n for all n in N}
= {L,|r is in R} (where L, is the left multiplication
map by r on R) which is ismorphic to R. ¢

4. Applications to matrix near-rings

J.D.P. Meldrum and A.P.J. van der Walt have introduced the
concept of a matrix near-ring (see [5]) which we now recall. Let N be
a near-ring with 1 and let ¢ be a positive integer. For an element = in
N and for integers 7,j with 1 <1, j <t define the function ;;on N as
follows:

L(nay, ..y, ymg, .00, ne) = (0,00, 705,...,0,...,0)
(where rn; is in the ith position). The ¢ x ¢ matrix near-ring over
N, My(N), is the subnearring of Map(N?) generated by {f5lrisin N
and 1 <4, j < t}. We note that f7; belongs to C(N,N*). Therefore
M;(N) is a subnearring of C(N, N*). The following result was proven
by van der Walt in [8].

Theorem (van der Walt). Let N be a finite simple near-ring such
that N = C(A,G) where A is a fized point free group of automorphisms
on G. Then My(N) is isomorphic to C(4,G?).

Our information on SE-groups for a finite simple near-ring N can
be used together with van der Walt’s theorem to prove a near-ring
analogue to a familiar matrix ring result in ring theory.

Theorem 5. Let N be a finite simple near-ring with N = C(4,G)

where A is a fized point free group of automorphisms on G. Let s and
t be positive integers. Then C(C(N,N*),C(N,N*)!) is isomorphic to
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C(N,N*).

Proof. Since N is simple we have seen that C(N,N*) is a simple
near-ring and C(N, N*) is isomorphic to C(4,G*). Using Corollary 2,
C(C(N,N*), C(N,N*)) is isomorphic ot C(4,(G*)*) which is isomor-
phic to C(4, G*?) and therefore isomorphic to C(N, N**). &
Corollary 7. If N is a finite simple near-ring with N = C(A, G) where
A is a fized point free group of automorphisms on G then My(M,(N))
is isomorphic to M, (N).

Proof. From van der Walt’s theorem C(A,G*) is isomorphic to
M,(N) and M;(C(A, G?) is isomorphic to My(M,(N)). ¢
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