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Abstract: We give various characterizations — in terms of module properties
— for Priifer domains in general, and for (locally) almost maximal Priifer
domains, in particular. A domain R is a Priifer domain if and only if pure-
injective divisible R-modules are injective. A Priifer domain R is locally
almost maximal exactly if finitely embedded HR-modules are pure-injective.
An h-local domain R is almost maximal Priifer if and only if finitely embedded
R-modules are direct sums of cocyclic R-modules.

All rings will be commutative with 1. A ring R is mazimal if it is
linearly compact in the discrete topology (this is the topology in which
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linear compactness will be considered here); R is almost mazimal if the
ring R/I is maximal for every non-zero ideal I of R. A domain R (a
ring without divisors of zero) is a valuation domain if its ideals form
a chain under inclusion; it is a Prifer domain if its finitely generated
ideals are projective, or, equivalently, its localization Rjps is a valuation
domain for every maximal ideal M of R. If all of thiese localizations Ras
are almost maximal, R is said to be locally almost mazimal (Brandal
[2, p-20]). A domain R is called h-local if (i) every non-zero prime ideal
of R is contained in exactly one maximal ideal, and (ii) every non-
zero element is contained in but a finite number of maximal ideals. By
Brandal [2, Th. 2.9], a domain is almost maximal if and only if it is an
h-local, locally almost maximal domain.

A module D over a domain R is called divisibleif rD = {rd|d € D}
is equal to D for all 0 # r € R, and h-divisible if it is an epic image
of a direct sum of copies of the field @ of quotients of R (as an R-
module). D is absulutely pure if it is pure in every R-module in which
it is contained. Megibben [8] has shown (in a more general form) that
a domain R is Priifer if and only if every divisible module is absolutely
pure. Naudé-Naudé-Pretorius [9] proved that a domain R is Priifer
exactly if all pure-injective modules are RD-injective (RD-injectivity is
defined as the injective property relative to inclusions A — B where
rA = ANrB for all »r € R; see [5, p.210]). This result will be sharpened:
it is enough to require that the pure-injective divisible modules be RD-
injective. See Theorem 5.

An R-module C is said to be cocycylic if it is an essential extension
of a simple R-module S, i.e. it is contained in the injective hull E(S) of
S. An R-module F is finitely embedded if it is an essential extension of
a finite direct sum of simple R-modules. In investigating classical rings
R (i.e. E(S) is linearly compact for every simple R-module §), Vimos
[10] identified the classical Priifer domains as those classical domains
over which the finitely embedded modules are direct sums of cocyclic
modules. We prove a similar result (Theorem 8) characterizing the h-
local domains over which such decompositions hold: these are exactly
the almost maximal Priifer domains. This is the dual of a result by
Matlis [7, Th. 5.7] which deals with the decompositions of finitely
generated modules into direct sums of cyclics. Those Priifer domains
will also be described over which the finitely embedded modules are
linearly compact (or pure-injective); see Theorem 6. A similar problem
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was investigated by Facchini [4]: he characterized the rings over which
finitely embededded modules have injective dimension < 1. (We wish
to thank Willy Brandal for calling our attention to this paper.)

For unexplained terminology we refer to standard texts or to

Fuchs-Salce [5].

1. Preliminaries

We start our discussion with lemmas on modules over arbitrary
domains R. For an R-module D and r € R, we set D[r] = {d € D|rd =
= 0}.

Lemma 1. The R-module Homg(D,*) is torsion-free whenever D 1is
a divisible R-module.

Proof. From the exact sequence 0 — D[r] — D—5D — 0 we infer that
the sequence 0 —» Hom(D, *)—+Hom(D, *) — Hom(D[r], %) is exact. {
Lemma 2. If A is a torsion-free and E is an injective R-module, then
Hompg(A, E) is divisible and pure-injective.

Proof. The pure-injectivity of Hompg(*, E) for E pure-injective is well
known (see e.g. [5, p.217]). The exact sequence 0 — E[r] - E-»E —
— 0 implies the exactness of

0 — Hom(A, E[r]) — Hom(4, E)->Hom(4, E) — Ext'(4, E[r]).

As Elr] is RD-injective (see [5,p.210]) and A is torsion-free, the last
term vanishes. Hence Hom(A4, E) is divisible. ¢

Lemma 3. The pure-injective hull of a divisible module is divisible.
Proof. If F is an injective cogenerator of the category of R-modules,
then for every R-module M, there is a pure embedding

M — Homp(Homg(M,E),E)=H

and the pure-injective hull PE(M) of M is a summand of the pure-
injective module H (see [5,p.217]). It is therefore enough to show that
if M is divisible, then so is H. By Lemma 1, if M is divisible, then
Hom(M, E) is torsion-free. Hence Lemma 2 implies H is divisible. ¢
Lemma 4. An RD-injective divisible module is injective.

Proof. By [5, p.213], an RD-injective module M decomposes as M =

= E®N where E isinjectiveand N' = [} =N = 0. If M is divisible,
0#£TER
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then necessarily N = 0, and M = E is injective. ¢

Remark. Actually, the following converse of Lemma 2 holds: if E is an
injective cogenerator of the category of R-modules, then Hompg(A, E) is
(pure-injective) divisible if and only if A is torsion-free. To see this,
consider the isomorphism [3, p.120]

Exth(B,Homg(A4, E)) & Homp(Torf(B, A), E)

which holds for all R-modules A, B and injective E. Recall that an
R-module D is divisible exactly if Extp(R/Rr,D) =0 for all » € R [5,
p.36). In view of the above isomorphism, D = Hompg( 4, E) is divisible if
and only if, for all r € R, Homg(Torf(R/Rr, A)E) = 0. This amounts
to Tor®(R/Rr,A) = 0 whenever E is an injective cogenerator. The
exact sequence 0 - R—+R — R/Rr — 0 induces the exact sequence
0 — Tor;(R/Rr,A) - R® A= AR ® A = A. This shows that
Tor;(R/Rr,A) = 0 for all » € R is equivalent to the torsion-freeness
of A.

The reader is advised to compare our remark with the well-known
fact that if E is an injective cogenerator, then the injectivity of
Hompg(A, E) is equivalent to the flatness of A. (Hence the equivalence
of (i) and (ii) in Theorem 5 can easily be derived: just recall flatness
and torsion-freeness are equivalent exactly for Priifer domains.)

2. Characterizations of Prifer domains

The next result gives various equivalent properties which charac-
terize Priifer domains among the domains. The equivalence of (i) and
(iv) is due to Megibben [8], while the equivalence of (i) and (ii) improves
on a result by Naudé-Naudé-Pretorious [9].

Theorem 5. For a domain R, the following are equvalent:

(i) R is a Prifer domain;

(ii) pure-injective divisible R-modules are injective;

(iii) pure-injective hulls of divisible R-modules are injective;

(iv) divisible R-modules are absolutely pure;

(v) h-divisible R-modules are absolutely pure.

Proof. (i) = (ii): For Priifer domains, purity and RD-property are
equivalent (see [5, p.47]). Hence Lemma 4 shows that (ii) holds for

Priifer domains.
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(ii) = (iii) is obvious in view of Lemma 3.

(iii) = (iv): Let D be a divisible module in the exact sequence
0—-D—> A— B — 0. Using the canonical embedding é6:D —
— PE(D), form the pushout diagram

0 — D -+ A - B -0
) la I
0 PED) > C - B— 0

where a is monic. By (iii), PE(D) is injective, and therefore Im « is a
summand of C. It follows that 46D is pure in C, and so D is pure in
A. Thus D is absolutely pure.

(iv) = (v) is trivial.

(v) = (i): Let L be a finitely generated ideal of R, and D an
h-divisible R-module. By (v), D is absolutely pure, thus every exten-
sion of D by a finitely presented R-module is splitting. In particular,
Ext'(R/L,D) = 0. Given an R-module M and its injective hull E, the
module D in the exact sequence 0 - M — E — D — 0 is h-divisible.
Form the commutative diagram

Hom(R, E) — Hom(R, D) — 0
! 1
Hom(L, E) — Hom(L, D) — Ext!(Z,M) — 0
o !
Ext'(R/L,E) =0 Ext'(R/L,D) =0

with exact rows and columns. The composite map Hom(R,E) —
— Hom(L, D) being surjective, Ext'(L, M) = 0 follows. This holds for
every M, so L is projective and R is Priifer. ¢

3. Locally almost maximal Priifer domains

Among the valuation domains, the almost maximal ones are dis-
tinguished by a number of attractive properties. Some of these proper-
ties carry over to almost maximal Priifer domains. We are particularly
interested in those which relate to the finitely embedded modules.
Theorem 6. For a Prifer domain R, the following are equivalent:
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(i) R is locally almost mazimal;

(i) finitely embedded R-modules are linearly compact;

(iii) finitely embedded R-modules are pure-injective;

(iv) cocyclic R-modules are pure-injective.

Proof. (i) = (ii): If Ry is an almost maximal valuation domain for
every maximal ideal M, then Q/Ra M is linearly compact for every M,
both as an Rjs- and as an R-module. A finitely embedded R-module
is a submodule of a finite direct sum of linearly compact R-modules of
the form Q/Rpr M, hence itself linearly compact.

(ii) = (iii) is clear, since linear compactness over a commutative
ring always implies pure-injectivity. ’

(iii) = (iv) is trivial.

(iv) = (i): The R-module Q/RpmM is cocyclic, and therefore
pure-injective. It is moreover, injective, since over Priifer domains di-
visible pure-injective modules are injective (cf. Theorem 5). The exact
sequence 0 — Rpr/RyM — Q/RyM — Q/Rpr — 0 implies the ex-

actness of

0 = Ext}(R/I,Q/RyM) — Exth(R/I,Q/Ru) —
— Ext%(R/I,Rp/Ru M)

for every ideal I for R. Simple modules are always RD-injective, and
hence they have injective dimension 1 [5, p.243]. If the last Ext vanishes,
then so does the middle one. This implies that @/ Rz is (an injective R-
module and so) an injective Rps-module, proving the almost maximality

4. h-local almost maximal Priifer domains

Our final goal is to find all h-local domains over which the finitely
embedded modules are direct sums of cocyclics.

Recall that a torsion module T' over an h-local domain R is the
direct sum of its localizations: Thr = Rar ®r T. Here Thy is an Rps-
module whose R- and Rjps-module structures coincide (see Brandal [1,
Lemma 2.7]).

We start with a lemma; this is the dual of a result by Matlis [7]
and Gill [6].

Lemma 7. Let R be a local domain. If every finitely embedded R-
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module is a direct sum of cocyclic R-modules, then R is a valuation
domain.

Proof. Suppose R has the stated property, but is not a valuation
domain. Choose a,b € R such that b ¢ Ra and a ¢ Rb. There is an
ideal 4 of R which is maximal with respect to the properties a € 4
and b ¢ A. Similarly, there is an ideal B of R maximal with respect
tob € B, a € B. Consider the R-module F = R/(A N B) which
is evidently a submodule of R/A @ R/B. Here R/A is subdirectly
irreducible with b + A generating its socle; thus R/A is cocyclic. The
same holds for R/B. We conclude that R/4 @ R/B and hence F is
finitely embedded. Neither a nor b is a unit of R, thus both A and
B are contained in the maximal ideal M of R. Consequently, F is
indecomposable, and hence — by hypothesis — cocyclic. But F has a
non-simple socle R(b + A) ® R(a + B), a contradiction. ¢ :

Observe that the last lemma holds for all commutative local rings.

We are now able to prove the dual of a theorem of Matlis [7, Th.
5.7]. (Since the ring is not assumed to be classical, duality arguments
can not be applied.)

Theorem 8. Let R be an h-local domain. The following are equivalent:
(a) R is an almost mazimal Prifer domain;

(b) every finitely embedded R-module is a direct sum of cocyclic R-
modules.

Proof. (a) = (b): Since Ris h-local, every finitely embedded R-module
F is a finite direct sum F = ©Fys where Fjs is a finitely embedded
Rpr-module. The R- and Rjs-module structures of Fys are identical,
thus it suffices to verify the implication for an almost maximal valuation
domain R (with maximal ideal M).

In this case, the injective hull E of a finitely embedded R-module
F is the direct sum of a finite number of copies of Q/M. Hence we
conclude that F is a submodule of a finite direct sum of uniserial R-
modules, and so it is polyserial in the sense of [5,p.190]. Polyserial
torsion modules over an almost maximal valuation domain are direct
sums of uniserials, hence (b) holds.

(b) = (a): We argue as before that it is enough to prove that a
local domain R with property (b) has to be an almost maximal valuation
domain.

That R is a valuation domain has been proved in Lemma 7. By
way of contradicition, suppose R is not almost maximal. Then there is
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a unit u in a maximal immediate extension R of R which is not in R

and whose breadth ideal
B=B(u)={rcRjug R+rR}+#0.

For every z € R\ B there is a (unit) v, € R such that v — u, € Ra.
Visibly, the family of units {u, € R|z € R\ B} satisfies

(i) uz —uy € Rz if y € Re,

(1) there is no v € R such that v —u, € Rz forall z € R\ B.

Define the fractional ideal C = B~! = {q € Q|¢B < R}; thusforr € R,
r~1 € C exactly if B < rR,i..

C= |J Rr .
rER\B

Multiplication by u, induces an automorphism a, of C/R. If y € Rz,
then u,z™! — uym_l € R shows that a,w = ayw for all w € Rz™1.
The automorphism a of C/R defined by aw = a,w for w € Rz} is
not induced by any element of R.

For some non-unit ¢ of R, consider the cocyclic uniserial R-module
V = C/Mt. There is no automorphism 6 of U which would induce «
on C/R, because of the choice of C. Using the submodule V = R/M1t
and the canonical map = : U — U/V, form the following commutative
diagram with exact rows:

=V

!

vV

0 - VvV - X —» U —20
Vi

o

7
0- V - U 5 U/V->o0

7/ lonr
7/

Since there is no automorphism 6 : U — U making the arising lower
triangle commute in either direction, neither the middle row nor the
middle column splits. Manifestly, VeV < X <U U, so X is finitely
embedded, and as such it is a direct sum X = X; ® X, where X; are
cocyclic. The proof of [5, p.190] shows that the intersection of X with
one of the U’s is pure in X. This amounts to the purity of one of
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the V’s in X. By [5, p.192], pure submodules of a finite direct sum
of uniserials are summands; consequently, either the middle row or the
middle column splits. This contradiction shows that no « € R can exist

with B(u) # 0, i.e. R is almost maximal. ¢

The characterization of rings R for which part (b) of Theorem 8

holds is an open question. The condition of R being h-local can be
weakened by demanding only that every prime # 0 in R be contained
in exactly one maximal ideal of R.
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