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We are going to investigate problems of the following type: Let X
be a set, o a topological structure (e.g. a closure) on X,{X;:1€ I} a
system of subsets of X; assume that a richer structure (e.g. a proximity)
X; is given on each X;; we aim at finding a common eztension of these
structures, i.e. a structure X compatible with o such that ¥|X; = X;
(i € I), where X¥|X; denotes the restriction of ~' to X;. Two natural
necessary conditions for the existence of such an extension: (i) ¥; has
to be compatible with o|X;; and (ii) | X;NX; = X;|X;NX; (3,5 € I)
[assuming, of course, that for arbitrary structures ¢ and X' on X, and for
B C ACX, (i) Z|Ais compatible with |4 whenever ¥ is compatible
with o, and (ii) ¥|B = (X2|A)|B; these conditions will be evidently
satisfied in each particular case we are going to consider].

See [13] for a survey of the classical extension problem when |I| =
=1. ‘ .

§0 contains all the necessary definitions and notation (including
those needed only in Parts II to IV). §1 deals with the case when o is
a closure and Y a proximity.

In Part II, o will be again a closure, and ¥ a semi-uniformity, a
contiguity or a merotopy. ’

In Part III, o will be a proximity, and Y a contiguity or a mero-
topy.

The following cases will be investigated in Part IV: a) o is a pro-
Ximity, X a semi-uniformity, b) o is a semi-uniformity or a contiguity,
Y a merotopy.

Each of the above mentioned questions will be considered in three
variants: a) without separation axioms; b) for Riesz-type structures; c)
~ for Lodato-type structures.

"These problems clearly have category theoretical aspects, which
will not be investigated here. It would be interesting to find out the
category theoretical reasons for the similarity of some results, and for

the dissimilarity of others, cf. [13] Problem 72.

0. Preliminaries

All the unproved statements in this séction are either well-known
or trivial (usually both).
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0.1 Closures. A closure [2] on X is a function ¢ : exp X — exp X
such that, for A,B C X,

Cl. ¢(0) =

C2. A Cc(A),

C3. A C B implies ¢(4) C ¢(B),
C4. ¢(AUB) C ¢(A)Uc(B).

If, in additon, ¢(c(A)) = ¢(A) for every A C X then c is a topology.

The closure c is said to be symmetric [27] (semi-uniformizable
n [2]) if y € ¢({z}) implies ¢ € c({y}) for z,y € X; it is separated |T]
(semi-separated in [2], Dy in [27]) if ¢({z}) = {z} for 2 € X, and weakly
separated [8) if ¢ ¢ c(A) implies ¢({z})Nc(4) = 0. A symmetric closure
is weakly separated iff ¢ € ¢(A) implies ¢({z}) C c(A); this condition is
Axiom Hj in [27]. Separated implies weakly separated, which in turn
implies symmetric. A topology is separated iff it is T;, and weakly
separated iff it is symmetric iff it is S; in the sense of [6] (better known
as Ro, but we shall use the term S;-topology).

If cis a closure on X , and z € X then a c—nezghbourhood [2] of
z is a set V C X such that ¢ & ¢(X \ V); the c-neighbourhoods of
constitute the c-neighbourhood filter of z; a c-neighbourhood (sub)base
of z is a (sub)base for the c-neighbourhood filter of z. (Occasionally,
when there is no danger of confusion, the letter ¢ will be dropped from
these names; the same convention applies to other notions depending
on some structure.) For A C X, int. A denotes the set of all z € X such
that A is a neighbourhood of z. int 4 = X \ ¢(X \ 4).

If c and ¢’ are closures on X then c is said to be coarser than ¢
(¢' finer than ¢) if ¢'(4) C ¢(4) for A C X.

For Xy, C X, the restriction to X, of the closure ¢, denoted by
c|Xo, is defined by co(A) = ¢(A) N Xy (4 C X,), where ¢y = ¢|Xo; ¢o
is a closure on X, symmetric, (weakly) separated or topological if c is
so. If ¢’ is finer than c then ¢'| X, is finer than c|X,.

Denoting the c-neighbourhood filter of 2 € X by v(z), we say that
so(z) = v(z)| X, is the trace filter (on X;) of the point z, where, for
s CexpX,

s/ Xo={SNX,:85 €s},

called the trace (on Xo) of s. For z € X, so(X) coincides with the
co-neighbourhood filter of z, while so(2) = exp X, (the zero filter on
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X,) whenever z ¢ ¢(Xg). This means that, in general, only the trace.
~ filters of the points in ¢(X,) \ Xy will be of interest.

0.2 Proximities. A prozimity [2] (called basic proximity or Cech
proximity when the shorter term is reserved for proximities in the sense
of Efremovich) on X is a relation § C exp X x exp X such that, for
A,B,C,A",B'CcX

P1. AéB implies BéA,

P2. A6X implies A # 0,

P3. AN B # 0 implies A§B,

P4. A6B,AC A', B C B' imply A'6B',

P5. (AU B)8C implies that either AﬁC or BéC.

We wrlte § for non-§. Parantheses will often be omitted, e.g.: 4 U BéC.

. The relation A3 is a base for the relation § (this is in fact a sub-
base-like notion) provided that ‘
AéB iff there are n,m € N and sets 4;,B; C X
(1<i<m,1<j <m) such that A,‘,BB-

for each i and j, 4 = UA,,B UB

(N denotes the set of the positive mtegers ) Clearly, §cCcpB. IffBisa
base for §, and 3 satisfies Axioms P1 to P4 then § is a proximity; any
praximity is a base for itself. '

A proximity § induces a symmetric closure ¢ = ¢(§) defined by

z € c¢(A) iff {z}6A.

The proximity § is said to be Riesz [26] (SP" in [7], weakly Lodato
in [8]) if, with ¢ = ¢(§) :

PRi. AéB implies c(A) Ne(B)=10
and Lodato [25] (P,-relation in [23]) if
PLo. AéB implies ¢(A)éc(B).

PLo implies PRi. § is Riesz or Lodato iff there is a base 3 for § such that
ABB implies ¢(A4) N ¢(B) = O, respectively ¢(A)Be(B) [c(A)be(B)]. If &
is Riesz (Lodato) then ¢(6) is weakly separated (it is an S;-topology).
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For proximities § and §' on X, 6 is 'said to be coarser than §'
(8" finer than §) if § O &'. If B is a base for §, 8’ for §', and 8 D '
then § D §'; in particular, if 8 is a base for §, §' is a proximity, and
B C §' then § is coarser than §'. The finest proximity on X is called
discrete (ASB iff AN B # 0); the coarsest one is called indiscrete (A6 B
iff A# 0 +# B). A finer proximity induces a finer closure.

If Xy C X, the restriction By = | X, of the relation 3 is defined
for A,B C X, by AByB iff ABB. If 3 is a base for § then §|X, is a
base for §/Xy. The restriction of a (Riesz/Lodato) proximity is again
a (Riesz/Lodato) proximity. For a proximity §, §| X, induces c(6)|X,.
The restriction of a finer proximity is finer.

[If Bo = B|X,, we write By for non-Bp in Xy; this notation cannot
be misunderstood if our attention is restricted to relations f satisfying
axioms P1 to P4 (or just P2 and XAX if X # @), because then 3, as
well as 3, determines the fundamental set: it is | Jdomg8 = |J domj].

A filter s on X is said to be §-compressed [6,7] (or: s is a com-
pressed filter in the proximity space (X,8)) if A,B C X, A, B € secs
imply A6B, where

secs=secxs={ACX: ANS#0 (S €s)}.

The zero filter is compressed. A proximity § is Riesz iff each ¢(§)-
neighbourhood filter is §-compressed. If s is §-compressed then s|X is
5| Xo-compressed.

0.3 Semi-uniformities. A semi-uniformity [2] on X is a filter U
on X x X such that

Ul. each U € U is an entourage,i.e. A CU,
U2. U teUforUclU,

where A = Ay is the diagonal of X, and U ™! is the inverse of U:
Ax ={(2,2) 12 € X}, U™ = {(2,3) : g0z},
and Uy means (z,y) € U. For z € X and A C X we write
UlAl={y:3z € A,2Uy}, Uz =Ul[{=}].

A (sub)base for a semi-uniformity is to be understood as a fil-
ter (sub)base on X x X. The symmetric entourages contained by the
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semi-uniformity i form a base for /. Any non-empty collection S of
entourages is a subbase for a semi-uniformity, provided that for each
U €U, U~ contains some V € §; in particular, any non-empty collec-
tion of symmetric entourages is a subbase for some semi-uniformity.

A semi-uniformity U induces a proximity § = §(i) defined by

(1) AéB iff (AxB)NU#0 (Uel);
equivalently:
(2) AéB iff U[AJNB =0 for some U € U.

Hence U induces a closure c(U) = ¢(§(U)). {Uz : U € U} is the c(U)-
neighbourhood filter of z € X. In (1) and (2), U can be replaced by any
base for U. If § is a (sub)base for U then {Uz : U € §} is a (sub)base
for v(z) in c(U).

The semi-uniformity U is said to be Riesz if

URi. U € U implies A C intox. U,

where the (¢ X ¢)-neighbourhood filter of (z,y) € X x X is generated
by the filter base

{Gx H:Gev(z), HEev(y)}

and ¢ = ¢(U). U is said to be Lodato if
ULo. U € U implies int.x. U € U.

U is Riesz (Lodato) iff URi (ULo) holds with U replaced by a subbase;
U is Lodato iff it has a (sub)base consisting of open entourages. (A set
Ais c-openif A = intA; an open entourage is meant to be (c(U) x c(U))-
open.) ULo implies URi. If Y is Riesz (Lodato) then sois §({{). URi and
ULo fit naturally between the corresponding axioms for proximities and
merotopies, so they are probably known; nevertheless, we are unable to
cite a source.

For two semi-uniformities 4 and U’ on X, U is said to be coarser

than U' (U' finer than U) if U C U'; in this case §(U) is coarser than
su').
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‘ For Xy C X, the restriction U| X, of the semi-uniformity U to X
is defined by

ulXo = {UlXu :U € U}, U|X0 =Un (Xo X Xo)

U| X, is a semi-uniformity on X, satisfying 8§(U|Xo) = 6(U)|Xe. T U
is Riesz or Lodato then so is U|Xy. The restriction of a finer semi-
uniformity is finer.

A filter s on X is U-Cauchy if U € U implies § x S C U for
some S € s. (U can be replaced by a subbase in this definition.) If s
is U-Cauchy then it is §(U)-compressed, and s| X, is U|X,-Cauchy for
Xo C X. U is Riesz iff every ¢(U)-neighbourhood filter is Cauchy.

0.4 Merotopies. A merotopy [21] (quasi-uniformity in [19], Cech

nearness in [24]) on X is a non-empty collection M of covers of X such
that

M1. if c € M and c refines d then d € M,
M2. if ¢,d € M then ¢(N)d € M,

where

o(N{d={CND:Cec, Ded}.

({0} is a cover of X = 0; @ is not a cover of it. c refines d, or c is a
refinement of d, if for any C € c thereis a D € d with C C D.) M2 can
be replaced by

M2'. any two elements of M have a common refinement in M.

A subset B of a merotopy M is a base for M if every element of
M has a refinement in B; B satisfies Axiom M2'. Conversely, any non-
empty collection B of covers that satisfies M2' is a base for exactly one
merotopy M; a cover ¢ belongs to M iff it has a refinement in B.

For a finite non-empty family F of covers, we define (N)F as follows:

A€ (N)F if JA(c)ec (ceF), 4=n{d(c):ceF).

(If F = {c,d} and c # d then (N)F = ¢(N)d.) A subset S of a merotopy
M is a subbase for M if

{(N)F :0 # F C S, F is finite}
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is a base for M. Any non-empty collection of covers of X is a subbase
for exactly one merotopy on X.
A merotopy M induces a semi-uniformity ¢/(M), for which a base
B (the one consisting of all the symmetric elements of Z/(M)) is defined
by
B={U(c):ceM}, U(c)=|J{CxC:Cec}.

(Taking ¢ from a (sub)base only, we obtain a (sub)base for U(M).)
Hence M induces a proximity §(M) = §(i(M)) and a closure c¢(M) =
= ¢(§(M)). For § = 6§(M),

(1) ASB iff St(4,c)NB£0 (c €M),

where

St(4,c) = | J{C €c:AnC #0}.

{St(z,¢c) : ¢ € M} is the ¢(M) neighbourhood filter of z, where St(z, c) =
= St({z},c). M can be replaced by a base in (1). If S is a (sub)base
for M then {St(z,c) : c € S} is a (sub)base for v(z) in ¢(M).

A merotopy M on X is said to be Riesz (Riesz nearness in [3]) if

MRi. for each ¢ € M, int c is a cover of X,

where
inte =int.c = {int. C : C € c},

and ¢ = ¢(M). M is said to be Lodato (nearness in [16], Lodato nearness

in [24]) if
MLo. ¢ € M implies int c € M.

MLo implies MRi. M is Riesz (Lodato) iff MRi (MLo) holds for some
subbase for M; M is Lodato iff it has a subbase consisting of ¢(M)-open
covers. If M is Riesz (Lodato) then so is U{(M).

For two merotopies M and M’ on X, M is said to be coarser than
M’ (M' finer than M) if M C M'. If S is a subbase for M and S C M’
then M is coarser than M'. {{X}} is a base for the indiscrete (coarsest)
merotopy on X; the discrete (finest) merotopy on X consists of all the
covers of X. A finer merotopy induces a finer semi-uniformity.
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For Xo C X, the restriction M|X, of the merotopy M to X, is
defined by -

(2) M|Xo = {c|Xo : c € M}.

M|X, is a merotopy on X, satisfying U(M|X,) = U(M)|X,. If M is
replaced by a (sub)base then (2) yields a (sub)base for M|Xy. If M is
Riesz or Lodato then so is M|X,. The restriction of a finer merotopy is
finer.

A filter s on X is M- Cauchy [19]if sNc # 0 for ¢ € M (equivalently:
for ¢ € S, where S is a subbase for M). M-Cauchy filters are U(M)-
Cauchy as well. If s is M-Cauchy then s{X, is M| X,-Cauchy. M is Riesz
iff every ¢(M)-neighbourhood filter is M-Cauchy.

0.5 Contiguities. A contiguity (essentially [20,17]) on X is a non-
empty collection I' of finite covers of X such that

Col. if c € T, c refines d, and d is finite then d € T,
Co2. if ¢,d € T' then ¢(N)d € T

Base and subbase for a contiguity, Riesz and Lodato contiguities, finer
and coarser contiguities, the restriction I'| Xy of a contiguity, and TI'-
Cauchy filters are defined in the same way as for merotopies. (” Contigu-
ity” means a Lodato contiguity in [16].) The proximity § = §(T') induced
by I' is defined by 0.4 (1) (with I' substituted for M); ¢(T') = ¢(6(T’)) is
the closure induced by I'. (It is superfluous to define U(T') in the same
way as U(M), because U(T') is then uniquely determined by §(T).) The
analogues of all the statements for merotopies listed in 0.4 are valid for
contiguities, too. In addition, if S is a subbase for I' then

ABB iff St(4,c)NB#0 (c€S)

defines a base G for §(T).

For a merotopy M, the contiguity I'(M) induced by M consists
of the finite elements of M. If M is Riesz or Lodato then so is T'(M).
§(T'(M)) = 6(M) and I'(M)| X, = I'(M|X,). A finer merotopy induces a
finer contiguity. Any M-Cauchy filter is I'(M)-Cauchy. ‘

Contiguities as well as semi-uniformities are structures lying be-
tween merotopies and proximities. Neither of the structures I'(M) and
U(M) determines the other, and they together do not determine M.
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0.6 Conventions. A family of prozimities in the closure space (X, c)
is a system {6; : i € I}, where I is a (possibly empty) set of indices,
such that §; is a proximity on some X; C X, X # 0, X; # 0 (i € I),

and the two conditions mentioned in the introduction are fullfilled, i.e.

(1) (f)=clX; (i€,

(2) 5,'|X;ﬂXj=5j|X,'ﬂXj (i,jEI).

Where these conditions have to be referred to, we shall say that the
family of proximities is (the proximities §; are) (1) compatible and (2)
accordant. When speaking about a family of prozimities in a closure
space, it will be understood that the closure space is denoted by (X, c);
and I,6; and X; are used as above; moreover, ¢; = c|X;, int = int,,
int; = int,;, Int = intcx, Int; = int; xe;, Xij = X; N X, v(z) is the
c-neighbourhood filter of ¢ € X, s;(z) the c-trace filter of z € X on X;.
The expression ”the trace filters are compressed” means that s;(z) is §;-
compressed for each z € X and each 7 € I. An eztension of {§; : i € I}
(or of the proximities §;) is a proximity § on X such that ¢ = ¢(6) and
6; = 6| X; (+ € I). In case the proximities §; have an extension, we shall
also say that they can be extended.

Analogous terminology, notations and conventions will be used for
other kinds of structures, with &/ and U; standing for semi-uniformities,
I’ and T; for contiguities, M and M; for merotopies; ”compressed” will
be replaced by "Cauchy”. If the structure given on X is not a closure
then ¢ denotes the closure induced by it, and the notations derived from
c (int, s;(z), etc.) will be used as above.

1. Extending a family of proximities in a closure
space ,

A. WITHOUT SEPARATION AXIOMS

1.1 If a family of proximities can be extended in a closure space then
the closure clearly has to be symmetric. We are going to show that
this condition is sufficient, too. In fact, we construct the finest and the
coarsest extension.
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Definition. Given a family of proximities in a closure space, define
6! C exp X xexp X as follows. A 6! B iff one of the following conditions
holds:

@) ANe(B) #9,
(2) c(A)NB £ 9,
(3) AN X;6; BN X; for some

In case confusion seems to be possible, we write §'(c,d;), or, more
precisely, 6'(c, {6; : ¢ € I'}); in particular, §1(c) = 6*(c,0). ¢

Theorem. A family of prozimities in a symmetric closure space always
has eztensions; § is the finest one.

Proof. It is easy to see that §' is a proximity on X.

1° 6'|X; is coarser than §;. If A§;B then (3) holds, and therefore
A8'B.

2° §'|X; is finer than §;. Assume A(§'|X;)B; this means that
A6'B and A,B C X;. If (1) holds then A N¢;(B) # 0, so there is a
point z € ANc;(B); hence {z}§;B by the compatibility of §;, thus A§;B.
The case of (2) is analogous. Finally, if (3) holds, i.e. if ANX;6;BNX;
for some j then AN X;, BN X; C X;; implies AN X;6; BN X; by the
accordance, so A§;B again.

3° ¢(8*) is coarser than c. If € ¢(B) then (1) is satisfied with
A = {z}, so {z}6'B.

4° ¢(8') is finer than c. Assume z ¢ ¢(B); we have to show that
none of the conditions (1) to (3) holds with A = {z}. {¢} Nc(B) =0
is evident. For y € B, = ¢ ¢({y}), thus we have y ¢ ¢({z}) from the
symmetry of ¢, and so ¢({z}) N B = 0. Finally,

{:c} N X,'E,'B NnX; (i & I),

because the left hand side is empty if z ¢ X;, and, for z € X, = & ¢(B)
implies z ¢ ¢(B N X;) N X; = ¢;(B N X;), thus {«}§;B N X;.

5° §! is the finest extension. Let § be another extension; we have
to show that §' C §. Assume A§'B. If (1) holds then ¢ € ¢(B) for
some z € A, thus {}éB and A§ B; similarly, (2) implies A§ B. Finally,
from (3) we have AN X;6B N X; (since §|X; = §;), hence AéB again. ¢
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1.2 Our next aim is to construct the coarsest extension; its definition
will be a little bit more complicated than that of the finest one.

Definition. For a family of proximities in a closure space, let 4 be
a base for 6° C exp X x exp X, where ABB iff one of the following
conditions holds:

(1) |A| <1 and AN¢(B) =09,
(2) |B| <1 and ¢(4)NB =0,
(3) Ab;B for some i€ I.

The notations §°(c, 6;), etc. will be used as in Definition 1.1 (and similar
conventions will apply to all subsequent definitions). ¢

Theorem. A family of prozimities in a symmetric closure space always
has a coarsest extension, namely §°.

Proof. f clearly satisfies Axioms P1 to P4, so 8% is a proximity on X.

1° §°|X; is finer than §;. If A5;B then (3) holds, so ABB and
A8°B.

2° 6% X; is coarser than §;. B|X; is a base for 8%\ X;, so it is
enough to show that B|X; C 5;. Assume that AGB and 4,B C X;. If
(1) holds and A # @ then A = {2} for some z € X;; now z ¢ c(B), so
z ¢ c;(B), implying {«}8;B, i.e. A§;B. The case of (2) is analogous.
Finally, if A§;B for some j € I then 4,B C Xij, so Ab; B follows from
the accordance.

3° ¢(8°) is finer than c. If = ¢ ¢(B) then (1) holds with A = {=},
thus {z}3B and {z}§°B.

4° ¢(6°) is coarser than c. Assume {2}6°B. Then B can be

written as a finite union |J By such that {z}3B, for each n; it is now
n

enough to show that

(4) z ¢ C(Bn)a

because then ¢ ¢ ¢(B) by Axiom C4. If (1) holds (with A = {z} and
B = B,,) then (4) is evident. If (2) holds and By, # 0 then B, = {y},
and the symmetry of ¢ implies ¢ ¢ ¢({y}), which is the same as (4).
Finally, if {«}6; By, for some i then @ ¢ ¢i(Br), so z € X; and B, C X;
imply (4) again.
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5° §° is the coarsest extension. Let § be another extension; it is
enough to show that § C §. Assume AGB. If (1) holds and A # 0 then
A = {z} for some ¢ € X, and z ¢ ¢(B), implying A§B, which follows
in the same way from (2), too. Finally, if (3) holds then A§B again,
because §; = §|X;. ¢

Part 5° of the above proof uses only one half of the assumption
that § is an extension: §° is the coarsest one among those proximities
6 that induce a closure finer than ¢, and for which §|X; is finer than §;
(z € I). Similarly, é! is the finest one among those proximities § that
induce a closure coarser than ¢, and for which §|X; is coarser than §;
(t € I), see 5° in the proof of Theorem 1.1. These observations are of
some interest when compared with the results of §1C.

1.3 Recall that the proximities on a fixed set form a complete lattice
with respect to the relation finer/coarser, and the infimum and the
supremum of the proximities é[i] on X (¢ € I # @) can be described
as follows: inf (] = |J8[i], while [J§[z] is a base for sup 8[1], (see e.g.

[2] 38 A1 and 38 A.5, where the infimum is called supremum, and vice
versa). Infima and suprema of proximities commute with the restriction
to a subset (evident) as well as with taking the induced closure ([2] 38
B.3); constructions of infima and suprema of closures are not needed
here, see them e.g. in [2] 31 A.2 and 31 ex. 2.

For i € I fixed, let us write §°(i] for §°(c,{é;}), and denote by
6°°[i] the coarsest proximity § on X (not necessarily compatible with
¢) for which §|X; = §;; this means that 46°°[i)B iff either A§;B or
A=0or B=0. Now we have, for I # 0,

1) 6 = sup & [i] = sup{ﬁo(c),s%p 6°°[4]}.

This could be checked looking at the constructions, but in fact it is
enough to know for the proof of (1) that proximities figuring in it do
exist: Denote by é' the proximity in the middle of (1), and by §" the
one on the right hand side of it. §° C §°[i] C 6°°[7] is evident, and so
is 6°[i] C 6°(c), therefore §° C §' C §". Moreover, ¢(§") is finer than
¢, and 6"|X; is finer than §;, because §°°[t]|X; = §;; hence §" C §° by
the remark at the end of 1.2 (and the construction of §° is not really
needed in that remark either: § U §° is an extension, so, §° being the
coarsest extension, we have § C § U §° C §°).
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Similarly, if 61[i] = §(¢,{6:}), and §'![i] denotes the finest pro-
ximity § on X (not necessarily compatible with ¢) for which §|X; = §;
(A8 [{]B iff AN X;6;BNX; or AN B # 0) then, for I #0,

(2) &' = inf §[i] = inf {51(c),i1}f §11i]}.

B. RIESZ PROXIMITIES IN A CLOSURE SPACE

1.4 If a family of proximities in a closure space has a Riesz extension
then each proximity is Riesz, the closure is weakly separated, and the
trace filters are compressed (because the neighbourhood filters have to
be compressed with respect to the extension). We are going to show
that these conditions are sufficient, too; there are again a finest and a
coarsest extension.

Definition. For a family of Riesz proximities in a weakly separated
closure space, let §, C exp X X exp X be defined as follows: Aé}B iff
either

(1) c(A)Ne(B)#0
or
(2) AN X;6;BNX; for somei. ¢

Lemma. Given a family of Riesz prozimities in a weakly separated
closure space, 8§} is a compatible Riesz prozimity on X; it is the finest
one among those Riesz prozimities § that induce a closure coarser than
¢, and for which §|X; is coarser than §; (i € I).

Proof. §}, is clearly a proximity on X.

1° 6L|X; is coarser than §;. If A§;B then (2) holds, implying
A8} B.

2° ¢(6},) is coarser than c. If z € ¢(B) then ¢({z})Nc(B) # @, so
{=}63,B by ().

3° ¢(6},) is finer than c. Assume z ¢ ¢(B); we have to show that
{z}8% B, i.e. that neither (1) nor (2) holds with A= {z}. ¢({z})n
Ne(B) = 0, since c is weakly separated. {z} N X;§;B N X; follows as in
4° of the proof of Theorem 1.1.
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4° &% is Riesz. If ASLB then (1) does not hold, and we have
already seen that ¢ = c(6}).

5° &} is finest. Let § be another Riesz proximity with &; C 6| X;

(4 € I) and ¢(6) coarser than c; we have to show that §; C §. Assume

A8, B. If (1) holds then c'(4) N ¢'(B) # @ where ¢' = ¢(§); now A§B,

because § is Riesz. If (2) holds then AN X;6§ BN X;, and so A B again.

. , o

Theorem. A family of Riesz prozimities in awéakly separated closure
space has a Riesz eztension iff the trace fillers are compressed; if so
then &}, is the finest Riesz eztension.

Proof. In view of the lemma, it is enough to show that if the trace
filters are compressed then 8}|X; is finer than &; (i € I). Assume
A§LB, A, B C X;. If (1) holds then, picking = € ¢(4) N ¢(B), we have
A, B € secs;(z), hence A§; B, because s;(z) is §;-compressed. On the
other hand, if ANX;§;BNX; for some j then Aé; B by the accordance,
just like in 2° of the proof of Theorem 1.1. ¢

If {int X; :i € I} covers X then it is not necessary to assume that
the trace filters are compressed. Indeed, if A, B C Xj, A, B € sec v(z),
z € int X; then X; € v(z), so AN X;, BN X; € sec v(z), implying
ANX;6;BNX; (since §; is Riesz); hence A§;B by the accordance.

Corollary. A femily of Riesz prozimities in a weakly separated closure
space has a Riesz extension iff

(3) . &KX (el

Proof. The necessity is obvious. Conversely, if (3) holds then each
si(z) is 6;-compressed, because it is compressed with respect to the
finer proximity 8%(c)|Xs; thus the theorem applies. ¢

1.5 Lemma. If §' and §" are prozimities such that c(§') = c(§"), §' is
Riesz, and §" is coarser than &' then §" is Riesz, too. §

Theorem. Under the hypotheses of Theorem 1.4, §° is the coarsest
Riesz extension.

Proof. Theorems 1.2 and 1.4, and the above lemma. ¢
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1.6 Assume that the conditions of Theorem 1.4 are satisfied. Similarly
to 1.3 (2),

(1) 6% = inf 64[i] = inf {5h(c),inf 8},

where 6}[i) = 6%(c,{8;}). Just like the other proximities in (1), §*[i]
is Riesz, since, with ¢! standing for ¢(§'[z]), we have ¢}(4) = AU¢;(AN
NX;). Concerning 1.3 (1), let us observe that §°°[i] cannot be replaced
by the ”coarsest Riesz proximity § on X for which §|X; = §,”, because
such a proximity may not exist: let |X| = 3, |Xo| = 2, and § be the
discrete proximity on Xj.

1.7 Observe that A8°(c)B iff either A is finite and AN ¢(B) = @ or B
is finite and ¢(A4) N B = 0. The next lemma will be needed in §1C.

Lemma. If ¢ is and S:-topology then §(c) is Lodato; if ¢ is a T;-
topology then 6°(c) is Lodato as well.

Proof. The first statement is evident. To prove the second one, assume
that ¢ is a T;-topology, and A§°{c)B. Then, say, A is finite and AN
Ne(B) = 0; hence ¢(A4) = A is finite, ¢(c(B)) = ¢(B), so ¢(4) 8§°(c)c(B).

¢

C. LODATO PROXIMITIES IN A CLOSURE SPACE

1.8 If a family of proximities in a closure space has a Lodato exten-
sion then each proximity is Lodato, the closure is an S;-topology, and
the trace filters are compressed (because a Lodato proximity is Riesz).
Somewhat suprisingly, these conditions are not sufficient:

Example. Let X = R?, ¢ be the Euclidean topology on X, X; = Rx
x{0}, X1 = X \ Xy, 6o the Euclidean proximity on X,, and § =
= 6%(¢)|X;. Now c is an S;-topology, §; is a Lodato proximity com-
patible with ¢;(z = 0,1), for 1 = 1 by Lemma 1.7. Moreover, the trace
filters are compressed, since the Euclidean proximity on X is a Lodato
extension of §y, while §;(c) is a Lodato extension of §;.

Assume that the family {6y, 6;} has a Lodato extension §. With
N'={n+2"":n € N}, consider A =N x (R\ {0}) and B =N' x (R)\
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\{0}). Now ¢(4) =N xR, ¢(B) = N' x R, hence 4§, B, and so A5B.
On the other hand, ¢(A) N Xo6oc(B) N Xy so that ¢(A4) N Xo6c(B) N X,
and ¢(A)éc(B), a contradiction. ¢

1.9 Definition. For a family of Lodato proximities in an S;-space, let
67 C exp X X exp X be defined as follows: A6} B iff either

(1) c(4)Ne(B) # 0
(2) c(A)N X;6;c(B) N X; for some i. ¢

Lemma. For a family of Lodato prozimities in an S-space, 61 is a
compatible Lodalo prozimity; it is the finest one among those Lodato

prozimities § on X that induce a closure coarser than c, and for which
8|X; is coarser than §; (i € I).

Proof. It is easy to see that 6} is a proximity on X.
1° §1|X; is coarser than §;. If A§;B then (2) holds, and so A8l B.
2° ¢(6}) is coarser than c. Just like in the proof of Lemma 1.4.
3° ¢(81) is finer than c. Assume z ¢ c¢(B); we have to show that
neither (1) nor (2) holds with A = {z}. ¢({z}) N ¢(B) = 0 because c is
S;.

(3) c({z}) N X,'S,'C(B) N X{

is evident if the left hand side is empty. Otherwise, one can take y €
€ c({z})NX;; now ¢({z}) = ¢({y}) (since cis S; ), thus (3) is equivalent
to

(4) ci({y})8ic(B) N X;.

¢ ¢ ¢(B) implies y € ¢(B) (again by S;), therefore y ¢ ¢(B)NX; =
= ci(¢(B) N X;), i.e. {y}bic(B) N X;, and so (4) holds indeed (as 6; is
Lodato).

4° §1 is Lodato. This is clear from ¢ = c(6}), since (1) and (2)
depend only on ¢(A) and ¢(B), and c is a topology.

5° 6} is finest. Let § be another Lodato proximity with &; C
C 6|X; (i € I) and ¢(6) coarser than ¢; we have to show that §} C é.
Assume A§}B. (1) implies ¢'(4) N ¢'(B) # @ where ¢' = ¢(§), thus
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(6 being Lodato) we have A§B. On the other hand, if (2) holds then
c(A) N X;6¢(B) N X;, so c(A)bc(B), implying A6B again.

1.10 Definition. For a family of Lodato proximities in an S;-space,
let 3 be a base for §) C expX x exp X, where ABB iff one of the
following conditions holds:

(1) A Cc({z}) for some z ¢ c¢(B), or A=0,
(2) B C c¢({z}) for some z & c¢(A), or B =0,
(3) there are 1, A', B' with A'6;B', A C ¢(A"'), B C ¢(B"). ¢

Lemma. If a family of Lodato prozimities is given in an S;-space, and
the trace filers are compressed then §7 is the coarsest one among those
compatible Lodato prozimities § on X for which §|X; is finer than §;
(z €I).

Proof. 1° §) is a proximity. B clearly satisfies Axioms P1, P2 and
P4. To prove P3, assume ABB. If (1) or (2) holds then AN B = §
follows from S;. If (3) holds then ¢(A') N ¢(B') = 0, because the trace
filters are compressed; hence AN B = () again, i.e. B fullfills P1 to P4.
Consequently, 60 is a proximity indeed.

2° §%|X; is finer than §;. If A§;B then (3) holds with A' = 4 and
B' = B, so AGB and A6} B.

3° ¢(8Y) is finer than c. If z € ¢(B) then (1) holds with A = {z},
thus {z}6! B.

4° ¢(8}) is coarser than c. Just as in 4° of the proof of Theorem
1.2, it is enough to show that {y}#B implies

(4) y & c(B).

If (1) holds (with A = {y}) then z ¢ ¢(B) and S; imply (4). If (2)
holds and B # 0 then from ¢ ¢ c¢({y}) and S; we have y ¢ c{z}),
which implies (4), since ¢({z}) = ¢(B) by S;. Finally, if (3) holds then
y € c(A"), B C ¢(B') and A'6;B’, thus ¢(A') N¢(B') = 0 (because the
trace filters are compressed), and y ¢ ¢(B') = c¢(c(B')) D ¢(B).

5° §% is Lodato. If ABB then c(A)Bc(B) follows directly from the
definition (taking into account that ¢ is a topology). Now 6} is Lodato,
since we have already seen that ¢ = ¢(6}).

6° 89 is coarsest. Let § be another compatible Lodato proximity

with §|X; C 6; (i € I); it is enough to show that § C &. If (1) holds
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then either A = 0, in which case A8B is evident, or {z}éB (since §
is compatible), hence ¢({z})éB (since § is Lodato), and so AéB. The
case of (2) is analogous. Finally, if (3) holds then A'é6B’, therefore
c(A')gc(B'), and A§B again. ¢

It is not ‘true that 6 is the coarsest one among those Lodato
proximities § that induce a closure finer than ¢, and for which §|X; is
finer than é; (2 € I), not even when I = {:

Example. Let (X,c) be the topological sum of two infinite indiscrete
spaces, and ¢' the discrete closure on X. Now ' is finer than ¢, but
63(c') = 6%(c') is not finer than 6 (c), since there are infinite sets A
and B with A6Y(c)B, while A2 (c')B for any pair of inifinite sets. ¢

1.11 Lemma. A family of Lodato prozimities in an S;-space has a
Lodato eztension iff §] C 63; if so then both §% and 61 are Lodato
ezlensions.

Proof. 1° Necessity. If § is a Lodato extension then 7 C § C 6% by
Lemmas 1.9 and 1.10 (the latter can be applied since the existence of
6 implies that the trace filters are compressed).

2° Sufficiency. If A8;B for some i then c¢(A4)8%c(B) by 1.10 (3),
so ¢(A)6}c(B), implying c(A) N ¢(B) = @ (because 6} is a proximity
by Lemma 1.9); this means that the trace filters are compressed and so
Lemma 1.10 applies as well as Lemma 1.9. Consequently, §7 and 61 are
compatible Lodato proximities, 67 |X; C 6; C 67|X;, and from 6} C 6%
we have also 5},|Xi - 52])(,-. Hence both 52 and 5}1 are extensions.

Theorem. A family of Lodato prozimities in an S;-space has a Lodato
eztension iff the trace filters are compressed, and, for any i,j € I,

(1) Ab8;B = C(A)ﬂngjC(B)ﬂXj;
if so then 89 is the coarsest and 6} is the finest Lodato eztension.
Remark: Observe that (1) is a strengthening of the accordance.

Proof. 1° Necessity. If ¢ is a Lodato extension then Aéb;B implies ASB,
hence ¢(A)éc(B) and ¢(A) N X;6¢(B) N X, thus the right hand side of
(1) holds.

2° Sufficiency. In consequence of Lemma 1.9, it is enough to prove
that 6} |X; is finer than §; (i € I). Assume that A6l B and 4,B C X;.
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£ 1.9 (1) holds then Aé6; B, because the trace filters are compressed. On
the other hand, if 1.9 (2) holds ie if ¢c(A)N R¢ §;¢(B)N X; for some
j then we have A§;B from (1).

3° 6% and 6} are Lodato extensions by the foregoing lemma; they
are coarsest, respectively finest by Lemmas 1.10 and 1.9. ¢

Corollary. A family of prozimities in an S,-space has a Lodato ezten-
sion iff {6;,6;} has a Lodato eztension for anyi,j € I. ¢

1.12 Corollary. A single Lodato prozimily given in an S;-space has
a Lodato eztension iff the trace filters are compressed.

Proof. 1.11 (1) is always satisfied for i = j, because c(S) NX; = ¢(S)
(S C X;), and §; is Lodato. ¢

1.13 Theorem. Let a family of Lodato prozimities be given in an
S1-space, assume that the trace filters are compressed, and

(1) (X \ X;)N(X;\Xy) =0 (4,5 €I

Then there ezists a Lodato extension.

Proof. We have to show that 1.11 (1) holds. Assume A§;B; it is
enough to consider the following three cases because then Axioms C4
and P5 can be applied:

a) 4,B C X;\ Xj;
b) A,B C Xij;
C) ACX,'\XJ', BCXij.

Case a). From (1) we have ¢(4)NX; C X;; and ¢(B)NX; C Xjj,
so, by the accordance, it is enough to prove that ¢(4) N X; 6; c(B) nX;j,
which is true, because ¢(4) N X; C ¢(4) N X; = c;(4), 51m11arly, c(B)N
NX; C ci(B), and §; is Lodato.

Case b). The accordance implies A§; B, so the right hand side of
1.11 (1) holds again, now because §; is Lodato

Case c). As in Case a), c(A) N X; C ¢;(A4), so ¢(4) N X; 6;B
(because §; is Lodato). The accordance 1mphes c(A)N X;$6;B, therefore
¢(A)N X;6;ci(B) (because §; is Lodato); ¢j(B) = ¢(B)N X completes
the proof. (}
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Corollary. Let a family of Lodato prozimities be given in an S;-space.
Assume that either each X; is open and the trace filters are compressed
or each X; is closed. Then there ezists a Lodato eztension.

Proof. ¢(X;\X;)N(X;\X;) does not change if ¢ is replaced by ¢|X;UX;;
X:\X; and X;\X; are disjoint closed (or open) sets in (X; U X}, ¢|X;U
UX;), thus (1) holds. ¢

If the sets X; form an open cover of X then we do not have to assume
that the trace filters are compressed, see after Theorem 1.4.

1.14 Assume that a non-empty family of Lodato proximities is given
in an S;-space. Similarly to 1.3 (2) and 1.6 (1), we have

(1) 6} = inf ;63 [i] = inf {8} (c), in 6 [i]},

where 67 [1] = 61 (c,{é;}), and inf;, denotes the infimum in the realm of
the Lodato proximities (recall that the Lodato proximities on X form
a complete lattice, see e.g. [7] (5.1); observe that §''[i] is Lodato).
The proof is the same as that of 1.3 (1) and 1.3 (2). The proximity in
the middle of (1) can be written as inf §}[i], because the infimum of
Lodato proximities inducing the same ‘closure is Lodato, too. However,

the right hand side of (1) cannot be replaced by inf{6} (c),inf §'1[i]}:

Example. Let X,c,Xq,80,A4 and B be as in Example 1.8, I = {0}.
Then Aé}(c)B, A§'*[0]B, but A§1B. ¢

If, in addition, the trace filters are compressed then

(2) 61 = sup 67 [i].

(The supremum of Lodato proximities is always Lodato, see e.g. [7]
(5.1).) An analogue of the right hand side of 1.3 (1) cannot be added
to (2), because, in general, there is no coarsest Lodato proximity § on

X for which §|X; = §; (see the example at the end of 1.6).

1.15 If the conditions of Theorem 1.11 are satisfied then we have the
following five extensions:

(1) §° D6 D6t o6, D8
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If I = @ then & = 67, and, assuming also that c is Ty, §° = &
(Lemma 1.7). If ¢ is T;, and each X; is closed then §° = 6% (look
at the definitions); similarly, if each X; is open then 6} = 6%. This
observation yields an alternative proof of Corollary 1.13 (only in T,-
spaces if the subsets are closed, but then we can get rid of T; using
a stock argument: switch over to the Ty-reflexion of (X,c), take an
extension there, and carry it back to (X, c)).

All the proximities in (1) can be, however, different if |I| = 1,
even when c is Ty:

Examples. a) In Example 1.14, A6} B, but A8%B.
b) Let X, ¢, X;,6,,4 and B be as in Example 1.8, I = {1}. Then
c(A)\ X18%(B)\ X1, but ¢(4)\ X182¢(B)\ X;. ¢

1.16 Concerning extensions of a single Efremovich prozimity, see [22],
[15] 3.25, [9] §4, [1], [10] §2, [12] 2.2., [14]. We know only the following
about simultaneously extending Efremovich proximities:

a) If {61,6,} is a family of Efremovich proximities in a topological
space, X = X; U X, either X; and X, are both open and the trace
filters are round, or X; and X, are both closed then {6;,6:} has an
Efremovich extension; this follows from [13] Remark 1.13 c). (A filter
s in the proximity space (X, c) is round [22] if for any S € s there is an
So € s with Sp6X \ §.)

b) The above statement is false for three proximities, even if the
subspaces are open-closed. (Essentially [13] Example 1.13b).)
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